summaryrefslogtreecommitdiff
path: root/chapter02/content_ch02.tex
blob: 39134f12cfa140250579c091fd17649199c01787 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
\chapter{Time-Continuous Signals and Systems}

\begin{refsection}

All signals considered in this chapter are \index{signal!deterministic signal} \textbf{deterministic}, i.e., its values are predictable at any time. Especially, the values can be calculated by a mathematical equation. In contrast, \emph{random} signals are not predictable. Its values are subject to a random process, which must be modelled stochastically.

Furthermore, the signals considered here are time-continuous.

\index{signal!time-continuous}
\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\draw node[block](Signals){\textbf{Signal}\\ \textbf{(deterministic)}};
		\draw node[block, below left=of Signals](Periodic){Periodic};
		\draw node[block, below right=of Signals](NonPeriodic){Non-periodic};
		\draw node[block, below left=of Periodic](Mono){Mono-chromatic};
		\draw node[block, below right=of Periodic](Multi){Multi-frequent};
		
		\draw [-latex] (Signals) -- (Periodic);
		\draw [-latex] (Signals) -- (NonPeriodic);
		\draw [-latex] (Periodic) -- (Mono);
		\draw [-latex] (Periodic) -- (Multi);
	\end{tikzpicture}
	\caption{Classification of signals}
	\label{fig:ch02:timecont_signals_classif}
\end{figure}

\section{Mono-Chromatic Signals}

\subsection{Real-Valued Signals and Phasor}

\paragraph{Representation by A Real-Valued Function.}

The mono-chromatic signal $x_{mc}(t)$ is defined by:
\begin{equation}
	x_{mc}(t) = \hat{X} \cdot \cos\left(\omega_0 t - \varphi_0\right)
	\label{eq:ch02:mono_chrom_eq}
\end{equation}%
\nomenclature[Sx]{$x_{mc}(t)$, $\underline{x}_{mc}(t)$}{Mono-chromatic signal}%
where

\begin{tabular}{ll}
	$\hat{X}$ & is the \index{amplitude} \textbf{amplitude} of the signal \nomenclature[Sx]{$\hat{X}$}{Amplitude of a mono-chromatic signal}, \\
	$\omega_0$ & is the \index{angular frequency} \textbf{angular frequency} of the signal \nomenclature[So]{$\omega_0$}{Angular frequency of a mono-chromatic signal}, \\
	$\varphi_0$ & is the \index{phase} \textbf{phase} of the signal \nomenclature[Sp]{$\varphi_0$}{Phase of a mono-chromatic signal}, \\
	$t \in \mathbb{R}$ & is the real-value time variable and continuously defined \nomenclature[St]{$t$}{Time (continuous)}.
\end{tabular}

In fact, the sine function $\sin()$ is mono-chromatic, too. However, it can be derived from \eqref{eq:ch02:mono_chrom_eq} with $\varphi_0 = \SI{90}{\degree}$.

\begin{equation*}
	x_{sin}(t) = \hat{X} \cdot \sin\left(\omega_0 t\right) = \cos\left(\omega_0 t - \SI{90}{\degree}\right)
\end{equation*}

The angular frequency is connected to the \index{frequency} \textbf{frequency}.
\begin{equation}
	\omega_0 = 2 \pi f_0
\end{equation}%
\nomenclature[Sf]{$f_0$}{Frequency of a mono-chromatic signal}

\begin{attention}
	You must not confuse the terms \emph{frequency} and \emph{angular frequency}!
\end{attention}

The inverse of the frequency is the \index{period} \textbf{period} $T_0$. It is the time interval at which the signal repeats.
\begin{equation}
	T_0 = \frac{1}{f_0} = \frac{2 \pi}{\omega_0}
\end{equation}%
\nomenclature[St]{$T_0$}{Period of a mono-chromatic signal}

Be aware of the units. The period $T_0$ is defined in seconds \si{s}. The frequency $f_0$ is the inverse of seconds, which is Hertz \si{Hz}. The angular frequency $\omega_0$ is the inverse of seconds, too. However, it is never given in Hertz, only in \si{rad/s} or, more commonly, \si{1/s}.

\begin{table}[H]
	\centering
	\caption{Units}
	\begin{tabular}{|l|l|}
		\hline
		Period $T_0$ & \si{s} \\
		\hline
		Frequency $f_0$ & \si{Hz} \\
		\hline
		Angular frequency $\omega_0$ & \si{1/s} \; (never Hertz!) \\
		\hline
	\end{tabular}
\end{table}

The actual unit of the signal is derived from its amplitude $\hat{X}$ which can be any physical measure.

\paragraph{Representation by A Complex-Valued Phasor.}

A graphical view on the creation of a cosine signal is depicted in Figure \ref{fig:ch02:cos_creation}.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{scope}[shift={(0, 0)}]
			\draw[-latex] (0,0) -- (4.5,0) node[below, align=left]{$t$};
			\draw[-latex] (0,-2.2) -- (0,2.2);
			\draw (1,0.1) -- (1,-0.1) node[below, align=center]{$\frac{T_0}{4}$};
			\draw (2,0.1) -- (2,-0.1) node[below, align=center]{$\frac{T_0}{2}$};
			\draw (3,0.1) -- (3,-0.1) node[below, align=center]{$\frac{3 T_0}{4}$};
			\draw (4,0.1) -- (4,-0.1) node[below, align=center]{$T_0$};
			
			\draw (0.5,0.1) -- (0.5,-0.1) node[below, align=center]{$t'$};
			
			\draw[red, thick, smooth, domain=0:4, samples=40] plot (\x, {2*cos( 360 * \x / 4 )});
		\end{scope}
		\begin{scope}[shift={(-4, 0)}]
			\draw[draw] (0:2) arc(0:360:2);
			\draw[-latex] (0,0) -- (0,1) node[right, align=left]{$\Re$};
			\draw[-latex] (0,0) -- (-1,0) node[below, align=center]{$\Im$};
			
			\draw (180:1.9) -- (180:2.1) node[left, align=center]{$\frac{T_0}{4}$};
			\draw (270:1.9) -- (270:2.1) node[below, align=center]{$\frac{T_0}{2}$};
			\draw (0:1.9) -- (0:2.1) node[right, align=center]{$\frac{3 T_0}{4}$};
			\draw (90:1.9) -- (90:2.1) node[above, align=center]{$0$ and $T_0$};
			
			\draw (135:1.9) -- (135:2.1) node[above left, align=right]{$t'$};
			
			\draw[very thick, blue, -latex] (135:0) -- (135:2);
			
			
			\draw[thick, green, -latex] (125:1) arc(125:235:1) node[right, align=left]{$\omega_0$};
		\end{scope}
		
		\draw[dashed] (-5.414, 1.414) -- (0.5, 1.414) -- (0.5, 0);
	\end{tikzpicture}
	\caption[Generation of a sinusoidal shape]{Generation of a sinusoidal shape. Imagine, there is a pointer (blue) with one side fixed to a point. Now, it begins rotating counter-clockwise with an angular frequency of $\omega_0$ (green). The arrow of the pointer draws a circle (left side). Each angle of the pointer is related to a time instance. The blue pointer is the current position at time instance $t'$. Its vertical value is projected into the time plot, forming the cosine wave (red).}
	\label{fig:ch02:cos_creation}
\end{figure}

You may now some relations:
\begin{itemize}
	\item A full rotation of the pointer takes exactly one period $T_0$.
	\item The orange cosine curve can be horizontally shifted by redefining the original angle of the pointer at $T_0$. This offset angle is the phase $\varphi_0$.
	\item The length of the pointer and the radius of the circle is the amplitude $\hat{X}$.
\end{itemize}

A mono-chromatic signal can be described by its three parameters
\begin{itemize}
	\item Amplitude $\hat{X}$
	\item Phase $\varphi_0$
	\item Frequency $\omega_0$
\end{itemize}

When a signal passes through a \ac{LTI} system, the amplitude, the phase or both may change. However, the frequency never changes. Thus, the frequency $\omega_0$ is assumed to be constant and neglected. Consequently, the parameters
\begin{itemize}
	\item amplitude $\hat{X}$ and
	\item phase $\varphi_0$
\end{itemize}
remain. Both are absorbed by the complex-valued \index{phasor} \textbf{phasor} $\underline{X}$, which uniquely describes a mono-chromatic signal.
\begin{equation}
	\underline{X} = \hat{X} \cdot e^{-j \varphi_0} = \hat{X} \angle -\varphi_0
\end{equation}%
\nomenclature[Np]{$r \angle \varphi$}{Complex with absolute value $r$ and phase $\varphi$ (e.g. phasor) in angle notation}

\begin{excursus}{Complex numbers}
	$j$ is the \index{imaginary unit} \textbf{imaginary unit}. It satisfies the equation
	\begin{equation}
		j^2 = -1
	\end{equation}%
	\nomenclature[Sj]{$j$}{Imaginary unit}%
	There is no real number $j \notin \mathbb{R}$ which satisfies the above solution. $j$ spans the set of complex numbers $\mathbb{C}$.
	
	In mathematics, the imaginary unit is noted as $i$. In engineering context, $j$ is used instead, because $i$ is the symbol of the electric current.
	
	A complex number $\underline{c} \in \mathbb{C}$ can be noted in \index{cartesian form} \textbf{cartesian form}:
	\begin{equation}
		\underline{c} = a + j b
	\end{equation}
	$a \in \mathbb{R}$ is the \index{real part} \textbf{real part} of $\underline{c}$. $b \in \mathbb{R}$ is the \index{imaginary part} \textbf{imaginary part} $\underline{c}$.
	\begin{subequations}
		\begin{align}
			a &= \Re\{\underline{c}\} \\
			b &= \Im\{\underline{c}\}
		\end{align}
	\end{subequations}%
	\nomenclature[Fr]{$\Re\{\underline{c}\}$}{Extracting the real part of the complex number $\underline{c}$}%
	\nomenclature[Fi]{$\Im\{\underline{c}\}$}{Extracting the imaginary part of the complex number $\underline{c}$}%
	Complex numbers $\underline{c}$ always carry an underline in this lecture to distinguish them from real numbers. However, this is not mandatory.

	Another notation is the \index{polar form} \textbf{polar form}:
	\begin{equation}
		\underline{c} = r \cdot e^{j \varphi}
	\end{equation}
	with
	\begin{subequations}
		\begin{align}
			r &= |\underline{c}| = \sqrt{\Re\{\underline{c}\}^2 + \Im\{\underline{c}\}^2} \\
			\varphi &= \mathrm{atan2} \left(\Im\{\underline{c}\}, \Re\{\underline{c}\}\right) \\
			e^{j \varphi} &= \cos \varphi + j \sin \varphi
		\end{align}
	\end{subequations}
	The polar form can be written in \index{angle notation} \textbf{angle notation}:
	\begin{equation}
		\underline{c} = r \angle \varphi
	\end{equation}
	$r \in \mathbb{R}$ and $\varphi \in \mathbb{R}$ are the \index{polar coordinates} \textbf{polar coordinates}.
\end{excursus}

The phasor $\underline{X} \in \mathbb{C}$ is a complex number, which is mostly represented in polar coordinates (see Figure \ref{fig:ch02:cmplxplane_phasor}).

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
	\draw[->] (-3.2,0) -- (3.2,0) node[below, align=left]{$\Re$};
	\draw[->] (0,-3.2) -- (0,3.2) node[left, align=right]{$\Im$};
	\draw[->, thick] (0, 0) -- (-40:3) node[right, align=left]{Complex phasor $\underline{X}$\\ (position at $t = 0$)};
	\draw (0:1.5) arc(0:-40:1.5) node[midway, right, align=left]{Phase $\varphi_0$};
	
	\draw[->, dashed] (-50:1) arc(-50:30:1) node[right, align=left]{$\omega_0$};
	\end{tikzpicture}
	\caption{Phasor in the complex plane}
	\label{fig:ch02:cmplxplane_phasor}
\end{figure}

Figure \ref{fig:ch02:cmplxplane_phasor} depicts the phasor in the complex plane. Figure \ref{fig:ch02:cos_creation} shows a complex plane, too. Please note that both complex planes are rotated by \SI{90}{\degree} with respect to each other.

\begin{fact}
	The phasor of a signal is a signal parameter, constant and \underline{not} time-dependent.
\end{fact}

The current position of the pointer $\underline{x}(t)$ in the complex plane is obtained by rotating it. It makes a full rotation each $T_0$ periods. Therefore, it rotates at an angular frequency of $\omega_0$. The rotation is a multiplication by $e^{j \omega_0 t}$ in the complex plane. $\underline{x}(t) \in \mathbb{C}$ is a complex value, too.
\begin{equation}
	\underline{x_{mc}}(t) = \underline{X} \cdot e^{j \omega_0 t} = \hat{X} \cdot e^{-j \varphi_0} \cdot e^{j \omega_0 t}
\end{equation}

The real-valued function can be obtained by extracting the real part of the complex-valued current value.
\begin{equation}
	x_{mc}(t) = \Re\left\{\underline{x_{mc}}(t)\right\}
\end{equation}

\begin{proof}{}
	\begin{equation}
		\begin{split}
			x_{mc}(t) &= \Re\left\{\underline{x_{mc}}(t)\right\} \\
			 &= \Re\left\{\hat{X} \cdot e^{-j \varphi_0} \cdot e^{j \omega_0 t}\right\} \\
			 &= \hat{X} \cdot \Re\left\{e^{j \left(\omega_0 t - \varphi_0\right)}\right\} \\
			 &= \hat{X} \cdot \Re\left\{\cos \left(\omega_0 t - \varphi_0\right) + j \sin \left(\omega_0 t - \varphi_0\right)\right\} \\
			 &= \hat{X} \cdot \cos \left(\omega_0 t - \varphi_0\right) \\
		\end{split}
	\end{equation}
\end{proof}

\subsection{Complex-Valued Signals}

\begin{excursus}{Are there complex-valued, mono-chromatic signals?}
	Yes, there is.
	\begin{equation}
		\underline{x}_{mc,e}(t) = \hat{X} \cdot e^{j \left(\omega_0 t - \varphi_0\right)}
	\end{equation}
	is a complex-valued, mono-chromatic signal. We will come back to it later, but not in this chapter.
	
	\vspace{0.5em}
	Phasor representation:
	\begin{equation}
		\underline{x}_{mc,e}(t) = \underline{X} \cdot e^{- j \omega_0 t}
	\end{equation}
	With the phasor $\underline{X}$:
	\begin{equation}
		\underline{X} = \hat{X} \cdot e^{- j \varphi_0} =  \hat{X} \angle -\varphi_0
	\end{equation}
	If you use a phasor, it must be clear from the context, whether you refer to a real-valued or complex-valued, mono-chromatic signal.
\end{excursus}

\section{Periodic Signals and Fourier Series}

Periodic signals $x_p(t)$ comprises a class of signals which indefinitely repeat at constant time intervals $T_0$.
\begin{equation}
	x_p(t + n T_0) = x_p(t) \qquad \forall \; n \in \mathbb{Z}, \quad \mathbb{Z} = \left\{..., -2, -1, 0, 1, 2, ...\right\}
\end{equation}%
\nomenclature[Sx]{$x_p(t)$, $\underline{x}_p(t)$}{Periodic signal}%
\nomenclature[Sn]{$n$}{Integer enumerator}

Mono-chromatic signals are a special kind of periodic signals. Multi-frequent signals are composed a limited or unlimited number of mono-chromatic signals, which superimpose. Multi-frequent signals are periodic signals in general.

\begin{fact}
	Each periodic signal can be decomposed into a superposition of mono-chromatic signals.
\end{fact}

The inverse of the period $T_0$ is $f_0$, which is the \textbf{base frequency}. This is the frequency at the periodic pattern repeats. Again, frequency and angular frequency $\omega_0 = 2 \pi f_0$ must be distinguished.

The periodic signal can now be decomposed in cosine and sine functions with integer multiples of the base frequency $f_0$ or base angular frequency $\omega_0$, respectively. They are called \index{harmonics} \textbf{harmonics}.
\begin{equation}
	\begin{split}
		x_p(t) &= \sum\limits_{n=0}^{\infty} a_n \cos\left(n \omega_0 t\right) + \sum\limits_{m=0}^{\infty} b_m \sin\left(m \omega_0 t\right) \qquad \forall \; n, m \in \mathbb{N} = \left\{0, 1, 2, ...\right\} \\
		 &= a_0 + \sum\limits_{n=1}^{\infty} a_n \cos\left(n \omega_0 t\right) + \sum\limits_{m=1}^{\infty} b_m \sin\left(m \omega_0 t\right) \\
	\end{split}
	\label{eq:ch02:fourier_series}
\end{equation}

What happened to $n = 0$ and $m = 0$? $\cos(0) = 1$ and $\sin(0) = 0$. That's it.

Comparing to the mono-chromatic signals, what happened to the phase $\varphi_0$? The phase $\varphi_0$ is a characteristic of mono-chromatic signals. It is completely absorbed by the coefficients $a_n$ and $b_n$ of the cosine and sine functions.

\subsection{Orthogonality}
\index{orthogonality}
The cosine and sine functions are orthogonal to each other. In geometry, two vectors $\vect{a}$ and $\vect{b}$ are orthogonal, if the angle between them is \SI{90}{\degree}. In this case, their inner product is zero.
\begin{equation}
	\langle \vect{a}, \vect{b} \rangle = 0
\end{equation}%
\nomenclature[Fa]{$\langle \vect{a}, \vect{b} \rangle$}{Inner product}

More generally, two functions $f(x)$ and $g(x)$ are orthogonal if their \index{inner product} \textbf{inner product} $\langle f, g \rangle$ is zero. 
\begin{equation}
	0 \stackrel{!}{=} \langle f, g \rangle_w = \int\limits_{a}^{b} f(x) g(x) w(x) \, \mathrm{d} x
\end{equation}
$w(x)$ is a non-negative weight function, which is $w(x) = 1$ in simple cases like this one.

Now, you can prove that the cosine and sine functions are orthogonal to each other.
\begin{equation}
	\int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \sin\left(m \omega_0 t\right) \, \mathrm{d} t = 0 \qquad \forall \; n, m \in \mathbb{Z}
	\label{eq:ch02:orth_rel_cos_sin}
\end{equation}

Furthermore, the sine and cosine functions with \underline{different} indices are orthogonal to each other.
\begin{equation}
	\int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(n \omega_0 t\right) \cos\left(p \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{np} \qquad \forall \; n, p \in \mathbb{N}
	\label{eq:ch02:orth_rel_cos}
\end{equation}
\begin{equation}
	\int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \sin\left(m \omega_0 t\right) \sin\left(q \omega_0 t\right) \, \mathrm{d} t = \frac{\pi}{\omega_0} \cdot \delta_{mq} \qquad \forall \; m, q \in \mathbb{N}
	\label{eq:ch02:orth_rel_sin}
\end{equation}
with the Kronecker delta
\begin{equation}
	\delta_{uv} = \begin{cases}
		1 & \qquad \text{if } u = v, \\
		0 & \qquad \text{if } u \neq v
	\end{cases}
	\label{eq:ch02:kronecker_delta}
\end{equation}%
\nomenclature[Fd]{$\delta_{uv}$}{Kronecker delta}

The \index{orthogonality relations} \textbf{orthogonality relations} \eqref{eq:ch02:orth_rel_cos_sin}, \eqref{eq:ch02:orth_rel_cos} and \eqref{eq:ch02:orth_rel_sin} point out:
\begin{itemize}
	\item Cosine functions are orthogonal if their indices are different. I.e., $n \neq p$ in \eqref{eq:ch02:orth_rel_cos}.
	\item Sine functions are orthogonal if their indices are different. I.e., $m \neq q$ in \eqref{eq:ch02:orth_rel_sin}.
	\item Cosine and sine function are orthogonal independent of their indices.
	\item The indices are the integer multiples of the base frequency $\omega_0$ (harmonics).
\end{itemize}

\subsection{Extraction of The Coefficients}

The orthogonality relations are useful to extract the coefficients $a_n$ and $b_n$ in \eqref{eq:ch02:fourier_series}. Given is the input signal $\tilde{x}_p(t)$ whose coefficient shall be determined. Following assumptions can be derived from the properties of a periodic signal:
\begin{itemize}
	\item $\tilde{x}_p(t)$ is composed of mono-chromatic cosine and sine functions.
	\item All cosine and sine functions have integer multiples of the base frequency.
	\item Each cosine and sine function has a different weight -- the coefficient.
\end{itemize}

Using the orthogonality relations, the coefficients $\tilde{a}_n$ and $\tilde{b}_n$ can be obtained by:
\begin{subequations}
	\begin{align}
		\tilde{a}_n &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_an} \\
		\tilde{b}_m &= \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \cdot \sin\left(m \omega_0 t\right) \, \mathrm{d} t \label{eq_ch02_fourier_series_coeff_bm}
	\end{align}
\end{subequations}

\begin{proof}{Parameter Extraction for $\tilde{a}_n$}
	Given is a periodic function $\tilde{x}_p(t)$, which can be decomposed into:
	\begin{equation}
		\tilde{x}_p(t) = \sum\limits_{p=0}^{\infty} \tilde{a}_p \cos\left(p \omega_0 t\right) + \sum\limits_{q=0}^{\infty} \tilde{b}_q \sin\left(q \omega_0 t\right)
		\label{eq_ch02_proof_per_sig_example}
	\end{equation}
	The coefficient $\tilde{a}_n$ is of interest.
	
	Inserting \eqref{eq_ch02_proof_per_sig_example} into \eqref{eq_ch02_fourier_series_coeff_an}, yields
	\begin{equation}
		\tilde{a}_n = \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \left(\sum\limits_{p=0}^{\infty} \tilde{a}_p \cos\left(p \omega_0 t\right) + \sum\limits_{q=0}^{\infty} \tilde{b}_q \sin\left(q \omega_0 t\right)\right) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t
	\end{equation}
	Due to the orthogonality relations, \underline{all products containing a sine function} and \underline{all products containing a cosine function with the index $n \neq p$} become zero. Furthermore, following must be true: $n = p$
	
	\begin{equation}
		\tilde{a}_n = \tilde{a}_p \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \cos\left(p \omega_0 t\right) \cdot \cos\left(n \omega_0 t\right) \, \mathrm{d} t \qquad \text{if } \; n = p
	\end{equation}
	
	Using \eqref{eq:ch02:orth_rel_cos}, the integral resolves to:
	\begin{equation}
		\tilde{a}_n = \tilde{a}_p \frac{\omega_0}{\pi} \frac{\pi}{\omega_0} \qquad \text{if } \; n = p
	\end{equation}
	
	In the end, it could be proven that $\tilde{a}_n = \tilde{a}_p$ for $n = p$.
	
	The proof is analogous for the coefficient $b_n$.
\end{proof}

$\cos\left(n \omega_0 t\right)$ can be seen as a ``test function'', which is used to extract the component with the index $n$. The proof points out:
\begin{itemize}
	\item All sine components are erased by $\cos\left(n \omega_0 t\right)$, due to the orthogonality relations.
	\item All cosine function with index $p \neq n$ are erased by $\cos\left(n \omega_0 t\right)$, due to the orthogonality relations.
\end{itemize}
For $b_m$, $\sin\left(m \omega_0 t\right)$ is analogous.

\begin{excursus}{Illustration of The ``Test Function''}
	For illustration of the ``test functions'', image you have a radio and want to hear a specific station. You tune to the frequency on which the station is broadcasting. All other signals are filtered out, you don't want to hear them. Actually, the radio does not employ orthogonality in this case. However, this illustration might help to understand the meaning of $\cos\left(n \omega_0 t\right)$ and $\sin\left(m \omega_0 t\right)$ \underline{in connection} with the orthogonality relations.
\end{excursus}

A special case is the coefficient $\tilde{a}_0$.
\begin{equation}
	\tilde{a}_0 = \frac{\omega_0}{\pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}_p(t) \, \mathrm{d} t
\end{equation}
$\cos\left(n \omega_0 t\right)$ is $1$ for $n = 0$. $\tilde{a}_0$ is the \index{DC offset} \textbf{\ac{DC} offset} of the signal. The above formula is known as the calculation of the signal mean in electrical engineering.

\begin{definition}{Fourier series}
	The composition of a series of mono-chromatic signals as shown in \eqref{eq:ch02:fourier_series} is called \index{Fourier series} \textbf{Fourier series}.
	\begin{equation*}
		x_p(t) = \sum\limits_{n=1}^{\infty} a_n \cos\left(n \omega_0 t\right) + \sum\limits_{m=1}^{\infty} b_m \sin\left(m \omega_0 t\right)
	\end{equation*}
	
	The coefficients can be calculated using \eqref{eq_ch02_fourier_series_coeff_an} and \eqref{eq_ch02_fourier_series_coeff_bm}.
\end{definition}

\subsection{Complex-Valued Fourier Series}

A complex-valued, periodic signal $\underline{x_p}(t)$ can be decomposed into complex-valued mono-chromatic signals. The coefficients $\underline{c}_n$ are phasors.
\begin{equation}
	\underline{x_p}(t) = \sum\limits_{n = -\infty}^{\infty} \underline{c}_n \cdot e^{j n \omega_0 t} \qquad \forall \; n \in \mathbb{Z}
	\label{eq:ch02:fourier_series_cmplx}
\end{equation}

The coefficients $\underline{\tilde{c}}_n$ of an input signal $\underline{\tilde{x}_p}(t)$ can be determined by:
\begin{equation}
	\underline{\tilde{c}}_n = \frac{\omega_0}{2 \pi} \int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{\tilde{x}_p}(t) \cdot e^{-j n \omega_0 t} \, \mathrm{d} t
	\label{eq_ch02_fourier_series_coeff_cn}
\end{equation}

It is based on the orthogonality relation:
\begin{equation}
	\int\limits_{-\frac{T_0}{2}}^{\frac{T_0}{2}} e^{j n \omega_0 t} e^{-j p \omega_0 t} \, \mathrm{d} t = \frac{2 \pi}{\omega_0} \cdot \delta_{np} \qquad \forall \; n, p \in \mathbb{Z}
	\label{eq:ch02:orth_rel_exp}
\end{equation}

\begin{definition}{Complex-Valued Fourier series}
	A complex-valued, periodic signal $\underline{x_p}(t)$ can be decomposed into a series complex-valued mono-chromatic signals \eqref{eq:ch02:fourier_series_cmplx} -- the \index{Fourier series!complex-valued} \textbf{complex-valued Fourier series}.
	\begin{equation*}
		\underline{x_p}(t) = \sum\limits_{n = -\infty}^{\infty} \underline{c}_n \cdot e^{j n \omega_0 t} \qquad \forall \; n \in \mathbb{Z}
	\end{equation*}
	
	The coefficients can be calculated using \eqref{eq_ch02_fourier_series_coeff_cn}.
\end{definition}

\subsection{Amplitude and Phase Spectra}

Let's consider the complex-valued Fourier series $\underline{x_p}(t)$ \eqref{eq:ch02:fourier_series_cmplx}. The coefficients $\underline{c}_n$ are phasors. Its absolute value (amplitude) $|\underline{c}_n|$ and argument (phase) $\arg\left(\underline{c}_n\right)$ can now be plotted over the index $n$. The index $n \in \mathbb{Z}$ is discrete. Thus, the resulting plots are value-discrete in the dimension of $n$. In contrast, the amplitudes and phases are value-continuous.

\begin{definition}{Spectrum of a period signal}
	\begin{itemize}
		\item The plot of the amplitude $|\underline{c}_n|$ is called \index{amplitude spectrum} \textbf{amplitude spectrum}.
		\item The plot of the phase $\arg\left(\underline{c}_n\right)$ is called \index{phase spectrum} \textbf{phase spectrum}.
		\item When referring to the \index{spectrum} \textbf{spectrum}, generally both amplitude and phase, or their complex-valued representation of $\underline{c}_n$ is meant.
	\end{itemize}
\end{definition}

\begin{fact}
	The index $n \in \mathbb{Z}$ is discrete. The plots of the spectrum are value-discrete in the dimension of $n$.
\end{fact}

When considering a complex-valued signal $\underline{x_p}(t)$, both amplitude and phase can take any value, with following constraints:
\begin{itemize}
	\item The amplitude $|\underline{c}_n|$ is always a positive real number.
	\item The phase $\arg\left(\underline{c}_n\right)$ a real number from the interval $[-\pi, +\pi]$.
\end{itemize}%
\nomenclature[Fa]{$|\cdot|$}{Absolute value of $\cdot$}%
\nomenclature[Fa]{$\arg\left(\cdot\right)$}{Argument (angle) of $\cdot$}

If the signal $\underline{x_p}(t) = x_p(t)$ is real-valued, i.e., $\Im\left\{\underline{c}_n(t)\right\} = 0$, the values of $\underline{c}_n$ are even more constrained by the \index{spectrum!symmetry rules} \textbf{symmetry rules}:
\begin{itemize}
	\item The coefficients $\underline{c}_n \in \mathbb{C}$ are still complex-valued phasors.
	\item But, the coefficients $\underline{c}_n$ show a special symmetry.
	\begin{itemize}
		\item The amplitude spectrum $|\underline{c}_n|$ is an \underline{even function}. It is symmetric with respect to the $y$-axis.
		\item The phase spectrum $\arg\left(\underline{c}_n\right)$ is an \underline{odd function}. It is symmetric with respect to the origin.
		\item As a consequence, the phase of $\arg\left(\underline{c}_0\right)$ at $n = 0$ must be either $0$ or $\pm \pi$. Note that, $+\pi$ is identical to $-\pi$ in the complex plane. The phase is the sign of the \ac{DC} bias: $\arg\left(\underline{c}_0\right) = 0$ means positive \ac{DC} bias and $\arg\left(\underline{c}_0\right) = \pi$ means negative \ac{DC} bias.
	\end{itemize}
\end{itemize}
These symmetry rules apply for \underline{all} real-valued signals $\underline{x_p}(t) = x_p(t) \in \mathbb{R}$. The symmetry rules ensure that the mono-chromatic components of the Fourier series \eqref{eq:ch02:fourier_series_cmplx} sum up to a real value at each time instance $t \in \mathbb{R}$.

\begin{definition}{Hermitian function}
	A complex-valued function $\underline{f}(t)$ is a \index{Hermitian function} \textbf{Hermitian function} if
	\begin{equation}
		\overline{\underline{f}(t)} = \underline{f}(-t)
		\label{eq:ch02:hermitian}
	\end{equation}%
	\nomenclature[Na]{$\overline{\left(\cdot\right)}$}{Complex conjugate of $\left(\cdot\right)$}
	where $\overline{\left(\cdot\right)}$ denotes the complex conjugate.
	
	Hermitian function are \index{conjugate symmetric} \textbf{conjugate symmetric}.
\end{definition}

$\underline{c}_n$ is Hermitian if and only if $\underline{x_p}(t) = x_p(t)$ is real-valued.

The symmetry rules do \underline{not} apply for complex-valued signals $\underline{x_p}(t) \in \mathbb{C}$.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$n$},
			ylabel={$|\underline{c}_n|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			axis lines=left,
			legend pos=north east,
			xmin=-4,
			xmax=4,
			ymin=0,
			ymax=3,
			xtick={-3, -2, ..., 3},
			ytick={0, 0.5, ..., 2.5},
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			}
		]
			\addplot[red, thick] coordinates {(-3, 0) (-3, 2.0)};
			\addplot[red, thick] coordinates {(-2, 0) (-2, 0.4)};
			\addplot[red, thick] coordinates {(-1, 0) (-1, 1.6)};
			\addplot[red, thick] coordinates {(0, 0) (0, 1.1)};
			\addplot[red, thick] coordinates {(1, 0) (1, 1.6)};
			\addplot[red, thick] coordinates {(2, 0) (2, 0.4)};
			\addplot[red, thick] coordinates {(3, 0) (3, 2.0)};
			\addplot[only marks, red, thick, mark=o] coordinates {(-3, 2.0) (-2, 0.4) (-1, 1.6) (0, 1.1) (1, 1.6) (2, 0.4) (3, 2.0)};
		\end{axis}
	\end{tikzpicture}
	\caption[Amplitude Spectrum of a multi-frequent signal]{Amplitude Spectrum of a multi-frequent signal. The absolute values (amplitudes) of the coefficients are plotted. The signal $\underline{c}_n$ is actually real-valued ($\Im\left\{\underline{c}_n(t)\right\} = 0$). This leads a symmetry with respect to the $y$-axis. The amplitude spectrum of a real-valued signal is an even function.}
	\label{fig:ch02:FSeries_Amplitude_Spectrum}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$n$},
			ylabel={$\arg\left(\underline{c}_n\right)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			axis lines=left,
			legend pos=north east,
			xmin=-4,
			xmax=4,
			ymin=-4,
			ymax=4,
			xtick={-3, -2, ..., 3},
			ytick={-3.14159, -1.5708, 1.5708, 3.14159},
			yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$,
$\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			}
		]
			\addplot[red, thick] coordinates {(-3, 0) (-3, 3.14159)};
			\addplot[red, thick] coordinates {(-2, 0) (-2, -0.5)};
			\addplot[red, thick] coordinates {(-1, 0) (-1, 1.6)};
			%\addplot[red, thick] coordinates {(0, 0) (0, 0)};
			\addplot[red, thick] coordinates {(1, 0) (1, -1.6)};
			\addplot[red, thick] coordinates {(2, 0) (2, 0.5)};
			\addplot[red, thick] coordinates {(3, 0) (3, -3.14159)};
			\addplot[only marks, red, thick, mark=o] coordinates {(-3, 3.14159) (-2, -0.5) (-1, 1.6) (0, 0.0) (1, -1.6) (2, 0.5) (3, -3.14159)};
			\addplot[only marks, blue, mark=x] coordinates {(0, -3.14159) (0, 0.0) (0, 3.14159)};
		\end{axis}
	\end{tikzpicture}
	\caption[Phase Spectrum of a multi-frequent signal]{Phase Spectrum of a multi-frequent signal. The arguments (phases) of the coefficients are plotted. The signal $\underline{c}_n$ is actually real-valued ($\Im\left\{\underline{c}_n(t)\right\} = 0$). This leads a symmetry with respect to the origin. The phase spectrum of a real-valued signal is an odd function. The blue $x$ define the possible phase values of the coefficient $\underline{c}_0$ of the real-valued signal.}
	\label{fig:ch02:FSeries_Phase_Spectrum}
\end{figure}

\begin{excursus}{Spectra in the nature}
	The spectrum is no abstract, mathematical theory. You can see spectra with your eye:
	\begin{figure}[H]
		\centering
		\includegraphics[scale=1]{../chapter02/Rainbow.jpg}
		\caption[A rainbow showing the spectrum of the sunlight]{A rainbow showing the spectrum of the sunlight: The white sunlight is composed of mono-chromatic, electromagnetic waves of all frequencies which are optically visible for humans. When light passes through a dispersive medium (glass prism, raindrop, etc.), it is refracted. Each mono-chromatic component has a different refraction index. The light components are separated by its frequency and become individually visible. An example, is a rainbow as depicted above. \licensequote{\cite{Arz2007}}{``Arz''}{\href{https://creativecommons.org/licenses/by-sa/3.0/deed.en}{CC-BY-SA 3.0}}}
	\end{figure}
	The rainbow is a natural example of an visible spectrum of the sunlight.
\end{excursus}

\section{Non-Periodic Signals and The Continuous Fourier Transform}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x_{np}(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-3,
			xmax=3,
			ymin=0,
			ymax=2,
			xtick={-2, -0.5, ..., 2},
			ytick={0, 0.5, ..., 1.5}
		]
			\addplot[blue, thick] coordinates {(-2, 0) (-0.5, 0)};
			\addplot[blue, dashed] coordinates {(-0.5, 0) (-0.5, 1)};
			\addplot[blue, thick] coordinates {(-0.5, 1) (0.5, 1)};
			\addplot[blue, dashed] coordinates {(0.5, 1) (0.5, 0)};
			\addplot[blue, thick] coordinates {(0.5, 0) (2, 0)};
		\end{axis}
	\end{tikzpicture}
	\caption{The rectangular function $\mathrm{rect}$ as an example for a non-period signal}
	\label{fig:ch02:rect_function}
\end{figure}
\index{rectangular function}

\subsection{Derivation of The Continuous Fourier Transform}

Non-periodic signals have no repeating pattern. Consequently, there is no period $T_0$. Mathematically, the period is indefinite $T_0 \rightarrow \infty$.

A non-periodic signal $\underline{x_{np}}(t)$ cannot be simply decomposed by a Fourier series \eqref{eq:ch02:fourier_series_cmplx}.
\begin{equation}
	\begin{split}
		\underline{x_{np}}(t) &= \lim\limits_{T_0 \rightarrow \infty} \sum\limits_{n = -\infty}^{\infty} \underline{c}_n \cdot e^{j n \omega_0 t} \\
		 &= \lim\limits_{T_0 \rightarrow \infty} \sum\limits_{n = -\infty}^{\infty} \underline{c}_n \cdot e^{j \frac{2 \pi n}{T_0} t}
	\end{split}
	\label{eq:ch02:sig_np_fourier_series}
\end{equation}

The coefficient $\underline{c}_n$ is defined by \eqref{eq_ch02_fourier_series_coeff_cn}:
\begin{equation*}
	\begin{split}
		\underline{c}_n &= \frac{\omega_0}{2 \pi} \int\limits_{t = -\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x_{np}}(t) \cdot e^{-j n \omega_0 t} \, \mathrm{d} t \\
		 &= \frac{1}{T_0} \int\limits_{t = -\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x_{np}}(t) \cdot e^{-j n \omega_0 t} \, \mathrm{d} t
	\end{split}
	\label{eq:ch02:sig_np_cn}
\end{equation*}

In this case where $T_0 \rightarrow \infty$, $n \omega_0$ is substituted by the frequency variable $\omega$.
\begin{equation}
	\omega = n \omega_0
	\label{eq:ch02:omega_subst}
\end{equation}

Inserting \eqref{eq:ch02:sig_np_cn} into \eqref{eq:ch02:sig_np_fourier_series} while considering \eqref{eq:ch02:omega_subst}, yields:
\begin{equation}
	\underline{x_{np}}(t) = \lim\limits_{T_0 \rightarrow \infty} \sum\limits_{n = -\infty}^{\infty} \frac{1}{T_0} \left( \int\limits_{t' = -\frac{T_0}{2}}^{\frac{T_0}{2}} \underline{x_{np}}(t') \cdot e^{-j \omega t'} \, \mathrm{d} t' \right) \cdot e^{j \omega t}
\end{equation}
Remember, that $n$ is still in the sum, since it has been absorbed by $\omega = n \omega_0$.

The outer sum is a Rieman sum. $\frac{1}{T_0}$ is substituted by $\frac{\Delta \omega}{2 \pi}$. With $T_0 \rightarrow \infty$, it can be rewritten as an integral.
\begin{equation}
	\underline{x_{np}}(t) = \underbrace{\frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underbrace{\left( \int\limits_{t' = -\infty}^{\infty} \underline{x_{np}}(t') \cdot e^{-j \omega t'} \, \mathrm{d} t' \right)}_{\text{Fourier transform}} \cdot e^{j \omega t} \, \mathrm{d} \omega}_{\text{Inverse Fourier transform}}
\end{equation}

The inner integral is the \textbf{continuous Fourier transform}, also called only \index{Fourier transform} \emph{Fourier transform}. 

\begin{definition}{Fourier Transform}
	The \index{continuous Fourier transform} \textbf{continuous Fourier transform} of the function $\underline{x}(t)$ is:
	\begin{equation}
		\underline{X}(j \omega) = \mathcal{F} \left\{\underline{x}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
		\label{eq:ch02:def_fourier_transform}
	\end{equation}%
	\nomenclature[Ff]{$\mathcal{F} \left\{ \cdot \right\}$}{Fourier transform of $\cdot$}
	
	The \index{inverse Fourier transform} \index{inverse continuous Fourier transform} \textbf{inverse (continuous) Fourier transform} is:
	\begin{equation}
		\underline{x}(t) = \mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} \underline{X}(j \omega) \cdot e^{+j \omega t} \, \mathrm{d} \omega
		\label{eq:ch02:def_inv_fourier_transform}
	\end{equation}%
	\nomenclature[Ff]{$\mathcal{F}^{-1} \left\{ \cdot \right\}$}{Inverse Fourier transform of $\cdot$}
\end{definition}

The Fourier transform $\mathcal{F} \left\{\underline{x}(t)\right\}$ and its inverse $\mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\}$ both yield functions which depend on $t$ or $\omega$, respectively. This relation is sometimes emphasized by appending $(t)$ or $\left(j \omega\right)$.
\begin{subequations}
	\begin{align}
		\mathcal{F} \left\{\underline{x}(t)\right\} &= \mathcal{F} \left\{\underline{x}(t)\right\} \left(j \omega\right) \\
		\mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} &= \mathcal{F}^{-1} \left\{\underline{X}(j \omega)\right\} (t)
	\end{align}
\end{subequations}

\subsection{Amplitude and Phase Spectra}

The value-continuous complex frequency variable $j \omega$ in the continuous Fourier transforms replaced the value-discrete index $n$ of the Fourier series. Due to their similarity, the constraints for all signals and the \index{spectrum!symmetry rules} \textbf{symmetry rules} for real-valued signals apply analogously.

\begin{itemize}
	\item The Fourier transform $\underline{X}(j \omega) \in \mathbb{C}$ is always complex-valued, for both real-valued $\underline{x}(t) = x(t) \in \mathbb{R}$ and complex-valued $\underline{x}(t) \in \mathbb{C}$ signals.
	\item The amplitude $|\underline{X}(j \omega)|$ is always a positive real number.
	\item The phase $\arg\left(\underline{X}(j \omega)\right)$ a real number from the interval $[-\pi, +\pi]$.
	\item For real-valued signals $\underline{x}(t) = x(t) \in \mathbb{R}$, but not for complex-valued $\underline{x}(t) \in \mathbb{C}$ signals, following additional constraints (symmetry rules) apply:
	\begin{itemize}
		\item The amplitude spectrum $|\underline{X}(j \omega)|$ is an \underline{even function}. It is symmetric with respect to the $y$-axis.
		\item The phase spectrum $\arg\left(\underline{X}(j \omega)\right)$ is an \underline{odd function}. It is symmetric with respect to the origin.
		\item As a consequence, the phase of $\arg\left(\underline{X}(0)\right)$ at $j \omega = 0$ must be either $0$ or $\pm \pi$. Note that, $+\pi$ is identical to $-\pi$ in the complex plane. The phase is the sign of the \ac{DC} bias: $\arg\left(\underline{X}(0)\right) = 0$ means positive \ac{DC} bias and $\arg\left(\underline{X}(0)\right) = \pi$ means negative \ac{DC} bias.
	\end{itemize}
\end{itemize}

Analogue to the Fourier series, the Fourier transform $\underline{X}(j \omega)$ is Hermitian \eqref{eq:ch02:hermitian} if and only if $\underline{x}(t) = x(t)$ is real-valued.
\begin{equation}
	\overline{\underline{X}(j \omega)} = \underline{X}(-j \omega) \qquad \forall \; \mathcal{F}^{-1}\left\{\underline{X}(j \omega)\right\} \in \mathbb{R}
\end{equation}

Let's investigate the \index{rectangular function} rectangular function from Figure \ref{fig:ch02:rect_function}. It is defined as:
\begin{equation}
	\mathrm{rect}(t) = \begin{cases}
		0 & \qquad \text{if } \; |t| > \frac{1}{2}, \\
		1 & \qquad \text{if } \; |t| < \frac{1}{2}
	\end{cases}
	\label{eq:ch02:rect_function}
\end{equation}%
\nomenclature[Fr]{$\mathrm{rect}(t)$}{Rectangular function}%
The function is undefined for $t = \pm \frac{1}{2}$. The function is now transformed, i.e., $\underline{x}(t) = \mathrm{rect}(t)$.

\begin{equation}
	\underline{X}\left(j \omega\right) =  \int\limits_{t = -\infty}^{\infty} \mathrm{rect}(t) \cdot e^{-j \omega t} \, \mathrm{d} t = \mathrm{sinc}\left(\frac{\omega}{2 \pi}\right)
\end{equation}
where $\mathrm{sinc}(t)$ is the \emph{normalized} sinc function. \nomenclature[Fr]{$\mathrm{sinc}(t)$}{Sinc function}

\begin{attention}
	Mathematics and engineering use a slightly different definition of the sinc function.
	
	In mathematics, it is \index{sinc function!unnormalized} \textbf{\textit{unnormalized} sinc function}:
	\begin{equation*}
		\mathrm{sinc}(t) = \frac{\sin\left(t\right)}{t}
	\end{equation*}
	
	In the context of signal processing and information theory, it is the \index{sinc function!normalized} \textbf{\textit{normalized} sinc function}:
	\begin{equation*}
		\mathrm{sinc}(t) = \frac{\sin\left(\pi t\right)}{\pi t}
	\end{equation*}
	
	In either case, the value at $t = 0$ is defined to:
	\begin{equation*}
		\mathrm{sinc}(t = 0) = \lim\limits_{t \rightarrow 0} \frac{\sin\left(t\right)}{t} = 1
	\end{equation*}
\end{attention}

The resulting spectra of $\underline{X}\left(j \omega\right)$ can now be drawn. The rectangular function is special. The imaginary part $\Im\left\{\underline{X}\left(j \omega\right)\right\} = 0$ is zero. Thus, the phase can only be $0$ or $\pm \pi$. However, this is a special property of all functions which are real-valued and even in the time domain like the sinc function.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$|\underline{X}\left(j \omega\right)|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=0,
			ymax=1.2,
			xtick={-50, -40, ..., 50},
			ytick={0, 0.25, ..., 1.0}
		]
			\addplot[red, thick, smooth, domain=-50:50, samples=200] plot (\x,{abs(sinc((1/(2*pi))*\x))});
		\end{axis}
	\end{tikzpicture}
	\caption{Amplitude spectrum of the rectangular function}
	\label{fig:ch02:rect_function_ampl_spectrum}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$\arg\left(\underline{X}(j \omega)\right)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=-4,
			ymax=4,
			xtick={-50, -40, ..., 50},
			ytick={-3.14159, -1.5708, 1.5708, 3.14159},
			yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$,
				$\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
		]
			\addplot[red, thick] coordinates {(-50, 0) (-39.48, 0)};
			\addplot[red, dashed] coordinates {(-39.48, 0)(-39.48, -3.14159)};
			\addplot[red, thick] coordinates {(-39.48, -3.14159) (-19.74, -3.14159)};
			\addplot[red, dashed] coordinates {(-19.74, -3.14159) (-19.74, 0)};
			\addplot[red, thick] coordinates {(-19.74, 0) (19.74, 0)};
			\addplot[red, dashed] coordinates {(19.74, 0) (19.74, 3.14159)};
			\addplot[red, thick] coordinates {(19.74, 3.14159) (39.48, 3.14159)};
			\addplot[red, dashed] coordinates {(39.48, 3.14159)(39.48, 0)};
			\addplot[red, thick] coordinates {(39.48, 0)(50, 0)};
		\end{axis}
	\end{tikzpicture}
	\caption[Phase spectrum of the rectangular function]{Phase spectrum of the rectangular function. Please note that $- \pi$ is equivalent to $+ \pi$.}
	\label{fig:ch02:rect_function_phase_spectrum}
\end{figure}

\subsection{Time Domain and Frequency Domain}

You have learnt two representations of a signal, so far.
\begin{itemize}
	\item \index{time domain} \textbf{Time domain} -- A signal is a function $\underline{x}(t)$ of the time.
	\item \index{frequency domain} \textbf{Frequency domain} -- A signal is a function $\underline{X}(j \omega)$ of the frequency.
\end{itemize}
Both $\underline{x}(t)$ and $\underline{X}(j \omega)$ refer to the same signal. 

The frequency domain is obtained from the time domain by a transform. For time-continuous signals, these transforms one of:
\begin{itemize}
	\item Fourier series
	\item continuous Fourier transform
\end{itemize}
The time domain is obtained by the respective inverse transform.

\begin{definition}{Transform operator}
	The operation of a transform between time and frequency domain is written as:
	\begin{equation}
		\underline{x}(t) \TransformHoriz \underline{X}(j \omega)
	\end{equation}%
	\nomenclature[Nt]{$\TransformHoriz$}{Transform from the left side to the right side}%
	for the transform from time to frequency domain, and vice versa:
	\begin{equation}
		\underline{X}(j \omega) \InversTransformHoriz \underline{x}(t)
	\end{equation}%
	\nomenclature[Nt]{$\InversTransformHoriz$}{Inverse transform from the left side to the right side}
\end{definition}

\textbf{But what is the purpose of the transforms?}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm] (ProbTD) {\textbf{Problem}\\ in time domain};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, right=5cm of ProbTD] (ProbFD) {\textbf{Problem}\\ in frequency domain};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=3cm of ProbTD] (SolTD) {\textbf{Solution}\\ in time domain};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=3cm of ProbFD] (SolFD) {\textbf{Solution}\\ in frequency domain};
		
		\draw[-latex, thick] (ProbTD.south) -- node[midway, left, align=right]{Hard to solve} (SolTD.north);
		\draw[-latex, thick] (ProbTD.east) -- node[midway, above, align=center]{Transform} (ProbFD.west);
		\draw[-latex, thick] (ProbFD.south) -- node[midway, right, align=left]{Easy to solve} (SolFD.north);
		\draw[-latex, thick] (SolFD.west) -- node[midway, above, align=center]{Inverse Transform} (SolTD.east);
	\end{tikzpicture}
	\caption{Explanation of the purpose of transforms}
	\label{fig:ch02:benefit_of_transforms}
\end{figure}

\section{Properties of The Continuous Fourier Transform}

\subsection{Energy Signals and Power Signals}

Besides the classification of signals into periodic and non-periodic, signals can be divided into \index{energy signals} \textbf{energy signals} and \index{power signals} \textbf{power signals}.

\begin{definition}{Energy and Power Signals}
	\begin{itemize}
		\item \textbf{Energy signals} have a finite, positive signal energy $0 < E < \infty$, but their average power is zero $P = 0$.
		\item \textbf{Power signals} have a finite, positive average signal power $0 < P < \infty$, but their signal energy is indefinite $E = \infty$.
	\end{itemize}
\end{definition}

The \index{average signal power} \textbf{average signal power} $P$ is a measure for the amount of energy transferred per unit time and defined by:
\begin{equation}
	P = \lim\limits_{T \rightarrow \infty} \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} \left|x(t)\right|^2 \; \mathrm{d} t
\end{equation}%
\nomenclature[Sp]{$P$}{Power}%
The signal power is connected to the \ac{RMS} value, which is often used in electrical engineering.
\begin{equation}
	\hat{x}_{RMS} = \lim\limits_{T \rightarrow \infty} \sqrt{ \frac{1}{T} \int\limits_{-\frac{T}{2}}^{\frac{T}{2}} \left|x(t)\right|^2 \; \mathrm{d} t}
\end{equation}

The \index{signal energy} \textbf{signal energy} $E$ is:
\begin{equation}
	E = \int\limits_{-\infty}^{\infty} \left|x(t)\right|^2 \; \mathrm{d} t
\end{equation}%
\nomenclature[Se]{$E$}{Energy}

The property of power signals, which have an indefinite signal energy, is a problem for the Fourier transform. The transform would yield an indefinite value. Thus:
\begin{fact}
	Every energy signal has a Fourier transform.
\end{fact}

Only some power signals have a Fourier transform. There are distributions which are power signals, but have a Fourier transform, too. Especially, all \emph{tempered distributions} have a Fourier transform.

\subsection{Basic Properties}

All properties of the Fourier transform can be proven using the definition of the Fourier transform \eqref{eq:ch02:def_fourier_transform}.

\subsubsection{Linearity}

Let
\begin{equation}
	\underline{h}(t) = \underline{a} \cdot \underline{f}(t) + \underline{b} \cdot \underline{g}(t)
\end{equation}
where
\begin{itemize}
	\item $\underline{a} \in \mathbb{C}$ and $\underline{b} \in \mathbb{C}$ are complex numbers and
	\item $\underline{f}(t)$ and $\underline{g}(t)$ are Fourier-transformable functions.
\end{itemize}

What is the Fourier transform of $\underline{h}(t)$?
\begin{equation}
	\underline{H}(j \omega) = \mathcal{F} \left\{\underline{h}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \left(\underline{a} \cdot \underline{f}(t) + \underline{b} \cdot \underline{g}(t)\right) \cdot e^{-j \omega t} \, \mathrm{d} t
\end{equation}
The integral can be split into a sum of two integrals.
\begin{equation}
	\underline{H}(j \omega) = \int\limits_{t = -\infty}^{\infty} \underline{a} \cdot \underline{f}(t) \cdot e^{-j \omega t} \, \mathrm{d} t + \int\limits_{t = -\infty}^{\infty} \underline{b} \cdot \underline{g}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
\end{equation}
The constants can be moved in front of the integrals.
\begin{equation}
	\underline{H}(j \omega) = \underline{a} \cdot \underbrace{\int\limits_{t = -\infty}^{\infty} \underline{f}(t) \cdot e^{-j \omega t} \, \mathrm{d} t}_{= \mathcal{F}\left\{\underline{f}(t)\right\}} + \underline{b} \cdot \underbrace{\int\limits_{t = -\infty}^{\infty} \underline{g}(t) \cdot e^{-j \omega t} \, \mathrm{d} t}_{= \mathcal{F}\left\{\underline{g}(t)\right\}}
\end{equation}

\begin{definition}{Linearity of the Fourier transform}
	\begin{equation}
		\mathcal{F}\left\{\underline{a} \cdot \underline{f}(t) + \underline{b} \cdot \underline{g}(t)\right\} = \underline{a} \cdot \mathcal{F}\left\{\underline{f}(t)\right\} + \underline{b} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
		\label{eq:ch02:op_lin}
	\end{equation}
	where
	\begin{itemize}
		\item $\underline{a} \in \mathbb{C}$ and $\underline{b} \in \mathbb{C}$ are complex numbers and
		\item $\underline{f}(t)$ and $\underline{g}(t)$ are Fourier-transformable functions.
	\end{itemize}
\end{definition}

\subsubsection{Differentiation and Integration}

\begin{definition}{Differentiation of the Fourier transform}
	\begin{equation}
		\mathcal{F}\left\{\frac{\mathrm{d}^n}{\mathrm{d} t^n} \underline{f}(t)\right\} = \left(j \omega\right)^n \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
		\label{eq:ch02:op_diff}
	\end{equation}
\end{definition}

\begin{definition}{Integration of the Fourier transform}
	\begin{equation}
		\mathcal{F}\left\{\int\limits_{t'= -\infty}^{t} \underline{f}(t') \, \mathrm{d} t' \right\} = \frac{1}{j \omega} \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
		\label{eq:ch02:op_int}
	\end{equation}
\end{definition}

\begin{excursus}{Network analysis of reactive electrical circuits}
	Linear, reactive electrical networks are analysed using the Fourier transform.
	
	For example, voltage and current have following relation in time domain at a capacity:
	\begin{equation}
		u(t) = \frac{1}{C} \int i(t) \, \mathrm{d} t
	\end{equation}
	The expression in complex-valued phasors (frequency domain) is:
	\begin{equation}
		\underline{U} = \underline{Z}_C \cdot \underline{I}
	\end{equation}
	Using the Fourier transform, the impedance $\underline{Z}_C$ can be determined to:
	\begin{equation}
		\underline{Z}_C = \frac{1}{j \omega C}
	\end{equation}
	
	The calculation is analogous for inductances. The volatge-current relation in the time domain is:
	\begin{equation}
		u(t) = L \cdot \frac{\mathrm{d}}{\mathrm{d} t} i(t)
	\end{equation}
	The complex-valued impedance $\underline{Z}_L$ (frequency domain) is:
	\begin{equation}
		\underline{Z}_L = j \omega L
	\end{equation}
\end{excursus}

\subsubsection{Multiplication}

\begin{definition}{Convolution theorem}
	A multiplication in the time-domain becomes a convolution in the frequency domain.
	\begin{equation}
		\mathcal{F}\left\{ \underline{f}(t) \cdot \underline{g}(t) \right\} = \frac{1}{2 \pi} \mathcal{F}\left\{\underline{f}(t)\right\} * \mathcal{F}\left\{\underline{g}(t)\right\}
		\label{eq:ch02:op_mult}
	\end{equation}
\end{definition}

\begin{excursus}{Convolution}
	The convolution is defined to:
	\begin{equation}
		f(t) * g(t) = \left(f * g\right) (t) = \int_{\tau = -\infty}^{\infty} f(\tau) g(t - \tau) \, \mathrm{d} \tau  = \int_{\tau = -\infty}^{t - \infty} f(\tau) g(\tau) \, \mathrm{d} \tau
		\label{eq:ch02:def_convolution}
	\end{equation}
\end{excursus}

\subsubsection{Time Shift}

%Let
%\begin{equation}
%	h(t) = \underline{f}(t - t_0)
%\end{equation}

\begin{definition}{Translation}
	\begin{equation}
		\mathcal{F}\left\{\underline{f}(t - t_0)\right\} = e^{-j t_0 \omega} \cdot \underbrace{\underline{F} \left(j \omega\right)}_{= \mathcal{F}\left\{\underline{f}(t)\right\}}
		\label{eq:ch02:op_time_shift}
	\end{equation}
	where
	\begin{itemize}
		\item $t_0 \in \mathbb{R}$ is a real number and
		\item $\underline{f}(t)$ is a Fourier-transformable function.
	\end{itemize}
\end{definition}

\subsection{Duality}

From \eqref{eq:ch02:def_fourier_transform}, we have:
\begin{equation*}
	\underline{X}(j \omega) = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) \cdot e^{-j \omega t} \, \mathrm{d} t
\end{equation*}
Now, swap $t$ and $-\omega$.
\begin{equation}
	\underline{X}(j t) = - \int\limits_{\omega = \infty}^{-\infty} \underline{x}(-\omega) \cdot e^{j \omega t} \, \mathrm{d} \omega
\end{equation}
Note that:
\begin{itemize}
	\item The negative sign in front of the integral comes from $\mathrm{d} t \rightarrow - \mathrm{d} \omega$
	\item The integration limits $\pm \infty$ are reversed in their sign to $\mp \infty$.
\end{itemize}
Now, extend the right side with $\frac{1}{2 \pi} \cdot 2 \pi$. Let the negative sign be consumed by reversing the integration limits.
\begin{equation}
	\underline{X}(j t) = \frac{1}{2 \pi} \int\limits_{\omega = -\infty}^{\infty} 2 \pi \underline{x}(-\omega) \cdot e^{j \omega t} \, \mathrm{d} \omega
\end{equation}
This equation resembles \eqref{eq:ch02:def_inv_fourier_transform}.
\begin{equation}
	\underline{X}(j t) = \mathcal{F}^{-1} \left\{2 \pi \underline{x}(-\omega)\right\}
\end{equation}

\begin{definition}{Duality}
	Suppose $\underline{g}(t)$ has a Fourier transform $\underline{G}\left(j \omega\right)$, i.e., $\mathcal{F}\left\{\underline{g}(t)\right\} = \underline{G}\left(j \omega\right)$. The Fourier transform of $\underline{G}(t)$ is:
	\begin{equation}
		\mathcal{F}\left\{\underline{G}(j t)\right\} = 2 \pi \cdot \underline{g} \left(-\omega\right)
		\label{eq:ch02:op_duality}
	\end{equation}
	
	The variables $t$ and $\omega$ are swapped in both the original function and its Fourier transform.
\end{definition}

An example for the duality is the convolution in time-domain. Due to the duality, it becomes a multiplication in the frequency domain.
\begin{equation}
	\mathcal{F}\left\{ \underline{f}(t) * \underline{f}(t) \right\} = \mathcal{F}\left\{\underline{f}(t)\right\} \cdot \mathcal{F}\left\{\underline{g}(t)\right\}
	\label{eq:ch02:op_conv}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm] (TD1) {$\underline{f}(t) \cdot \underline{g}(t)$};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, right=3.5cm of TD1] (TD2) {$\underline{f}(t) * \underline{f}(t)$};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=2cm of TD1] (FD1) {$\frac{1}{2 \pi} \left(\underline{F}\left(j \omega\right) * \underline{G}\left(j \omega\right)\right)$};
		\node[align=center, minimum width=2.5cm, minimum height=1.5cm, below=2cm of TD2] (FD2) {$\underline{F}\left(j \omega\right) \cdot \underline{G}\left(j \omega\right)$};
		
		\node[align=right, anchor=east, left=3cm of TD1] (LabelTD) {\textbf{Time domain}};
		\node[align=right, anchor=east, below=2cm of LabelTD] (LabelFD) {\textbf{Frequency domain}};
		\node[align=right, above=1cm of TD1] (Func1) {\textbf{Function 1}};
		\node[align=right, above=1cm of TD2] (Func2) {\textbf{Function 2}};
		
		%\draw (TD1) node[midway, align=right, rotate=-90]{$\TransformHoriz$} (FD1);
		%\draw (TD2) node[midway, align=right, rotate=-90]{$\TransformHoriz$} (FD2);
		\draw[o-*, thick] (TD1.south) -- (FD1.north);
		\draw[o-*, thick] (TD2.south) -- (FD2.north);
		
		\draw[thick] (TD1.south east) -- (FD2.north west);
		\draw[thick] (TD2.south west) -- (FD1.north east);
	\end{tikzpicture}
	\caption{Duality}
\end{figure}

\paragraph{Consequences of The Duality.}

\begin{itemize}
	\item Uncertainty relationship:
	\begin{itemize}
		\item Signals which are \underline{narrow in time domain} are \underline{wide in frequency domain}.
		\item Signals which are \underline{wide in time domain} are \underline{narrow in frequency domain}.
	\end{itemize}
	\item The duality affects the units of the time variable $t$ and the frequency variable $\omega$.
	\begin{itemize}
		\item The units must be inverse.
		\item If $t$ is in seconds, $\omega$ must be \si{1/s}.
	\end{itemize}
\end{itemize}

\subsection{Dirac Delta Function} \label{sec:ch02_dirac_impulse}

An important distribution is the \index{Dirac delta function} \textbf{Dirac delta function} $\delta(t)$. The Dirac delta function is zero everywhere except at its origin, where it is an indefinitely narrow, indefinitely high pulse.
\begin{equation}
	\delta(t) = \begin{cases}
		+\infty & \qquad \text{if } t = 0, \\
		0 & \qquad \text{if } t \neq 0
	\end{cases}
	\label{eq:ch02:dirac_delta}
\end{equation}%
\nomenclature[Fd]{$\delta(t)$}{Dirac delta function}%
It is constrained by
\begin{equation}
	\int\limits_{-\infty}^{\infty} \delta(t) \; \mathrm{d} t = 1
\end{equation}

\begin{attention}
	The Dirac delta function $\delta(t)$ must not be confused with the Kronecker delta \eqref{eq:ch02:kronecker_delta}. The Dirac delta function operates in continuous space $t \in \mathbb{R}$. The Kronecker delta $\delta_n$ (here one-dimensional) operates in discrete space $n \in \mathbb{Z}$.
\end{attention}

A special feature of the function is called \index{Dirac measure} \textbf{Dirac measure}.
\begin{equation}
	\int\limits_{-\infty}^{\infty} f(t) \delta(t) \; \mathrm{d} t = f(0)
	\label{eq:ch02:dirac_measure}
\end{equation}

Using the Dirac measure, the Fourier transform can be calculated:
\begin{equation}
	\mathcal{F} \left\{\delta(t)\right\} = \int\limits_{-\infty}^{\infty} \delta(t) \cdot e^{-j \omega t} \; \mathrm{d} t = 1
	\label{eq:ch02:ft_dirac}
\end{equation}
The Fourier transform of the Dirac delta function is the frequency-independent constant $1$.

\subsection{Fourier Transforms of Sinusoidal Functions}

\begin{equation}
	\mathcal{F} \left\{\cos\left(\omega_0 t\right)\right\} = \pi \left( \underbrace{\delta\left(\omega - \omega_0\right)}_{\text{Poistive frequency}} + \underbrace{\delta\left(\omega + \omega_0\right)}_{\text{Negative frequency}} \right)
\end{equation}

\begin{equation}
	\mathcal{F} \left\{\sin\left(\omega_0 t\right)\right\} = -j \pi \left( \underbrace{\delta\left(\omega - \omega_0\right)}_{\text{Poistive frequency}} - \underbrace{\delta\left(\omega + \omega_0\right)}_{\text{Negative frequency}} \right)
\end{equation}

\begin{itemize}
	\item The sinusoidal signals (cosine and sine) follow the symmetry rules.
	\begin{itemize}
		\item They have a part in both the positive and the negative frequency half-space (at $- \omega_0$ and $+ \omega_0$).
		\item The cosine function is even.
		\item The sine function is odd.
	\end{itemize}
	\item There are two Dirac delta functions at $- \omega_0$ and $+ \omega_0$.
	\begin{itemize}
		\item The Dirac delta function at $- \omega_0$ or $+ \omega_0$ is $\infty$. Sinusoidal functions are power signals. Remember, they have an infinite energy.
		\item However, the Dirac delta functions can be weighted by the signal amplitude. Linearity of the Fourier transform applies.
		\item Sinusoidal functions are mono-chromatic. So, it makes good sense, that they are only defined at $\pm \omega$.
	\end{itemize}
	\item The Fourier transforms of the cosine and the sine function are phase shifted by $\pi/2$ or \SI{90}{\degree}, respectively, in the complex plane.
	\begin{itemize}
		\item The Fourier transform of the sine function has a $-j$ whilst the cosine function has not.
		\begin{itemize}
			\item $\Im\left\{\mathcal{F} \left\{\cos\left(\omega_0 t\right)\right\}\right\} = 0$ (even function)
			\item $\Re\left\{\mathcal{F} \left\{\sin\left(\omega_0 t\right)\right\}\right\} = 0$ (odd function)
		\end{itemize}
		\item Now, you see the orthogonality of these functions geometrically. ;)
	\end{itemize}
\end{itemize}


\section{\acs{LTI} Systems}

\begin{definition}{System}
	A system is an entity or a process which responds to an input signal with an output signal.
	
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\node[draw, block] (System) {System\\ $\underline{h}(t)$};
			\draw[<-o] (System.west) -- ++(-2cm, 0) node[above, align=center]{Input signal\\ $\underline{x}(t)$};
			\draw[->] (System.east) -- ++(2cm, 0) node[above, align=center]{Output signal\\ $\underline{y}(t)$};
		\end{tikzpicture}
		\caption{A system with input and output}
	\end{figure}
\end{definition}

\subsection{Classification of Systems}

\begin{description}
	\item[Deterministic or stochastic] A deterministic system is predictable at any time, whereas a stochastic system is based on a random process.
	\item[Causal or non-causal] A system is causal if its output signal $\underline{y}(t_0)$ at the time instance $t_0$ only relies on input signal values of the past, i.e., $\underline{x}(t)$ with $ t \leq t_0$. A is system is non-causal if its output signal also depends on future values of the input signal.
	\item[Linear or non-linear] A linear system fulfils the \textbf{superposition} principle: $y = S(a x_1 + b x_2) = a S(x_1) + b S(x_2)$.
	\item[Time-variant or time-invariant] In a time-invariant system, input signals can be arbitrarily shifted in time, and the system produces an output signal shifted in the same time, i.e., $y(t - \Delta t) = S(x(t - \Delta t))$. In contrast, a system which changes its behaviour over time is time-variant.
	\item[Time-discrete or time-continuous] This is analogous to time-discrete and time-continuous signals.
	\item[One-dimensional or multidimensional] A one-dimensional system has one pair of input and output signals. A multidimensional system processes a vector $\cmplxvect{x}(t)$ of input signals and produces a vector $\cmplxvect{y}(t)$ of output signals.
\end{description}

The focus of this lecture is on \acf{LTI} systems. Systems in this chapter are furthermore deterministic.

\subsection{Transfer Function}

Each deterministic system can be analytically described.

Let's consider an example electrical network with the input voltage $u_i(t)$ and the output voltage $u_o(t)$.
\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\draw (0, 0) to[R, l=$R$, o-] ++(2,0) to[L, l=$L$] ++(2,0) to[short, *-o] ++(2,0);
		\draw (4, 0) to[C, l=$C$, -*] ++(0,-2);
		\draw (0, -2) to[short, o-o] ++(6,0);
		
		\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
		\draw (6, 0) to[open, v^=$u_o(t)$] (6, -2);
	\end{circuitikz}
	\caption{An example system: a electrical network (2nd order low pass)}
\end{figure}
Using Kirchhoff's circuit laws, the following relation can be determined.
\begin{equation}
	L C \frac{\mathrm{d}^2 u_o(t)}{\mathrm{d} t^2} + R C \frac{\mathrm{d} u_o(t)}{\mathrm{d} t} + u_o(t) = u_e(t)
\end{equation}

It is a second order differential equation. The order corresponds to the number of memories in the system.

Memorizable quantities are for example:
\begin{itemize}
	\item Energy (e.g. in the form of electrical charge, voltage or current)
	\item Information
\end{itemize}
Examples for memories are:
\begin{itemize}
	\item Capacitors (electrical energy)
	\item Inductances (magnetic energy)
	\item Spring (potential energy)
	\item Flip-flop (for digital information)
\end{itemize}

\textbf{How can the output signal of the network $u_o(t)$ determined in relation to a known input signal $u_i(t)$?}

In the time domain, it is hard to solve the differential equation. Remember the explanation of the benefits of transforms (Figure \ref{fig:ch02:benefit_of_transforms}).

Let's use the Fourier transform to formulate a simpler problem.
\begin{equation*}
	L C \frac{\mathrm{d}^2 u_o(t)}{\mathrm{d} t^2} + R C \frac{\mathrm{d} u_o(t)}{\mathrm{d} t} + u_o(t) = u_i(t)
\end{equation*}
is transformed to
\begin{equation}
	\begin{split}
		\left(j \omega\right)^2 L C \underline{U}_o\left(j \omega\right) + \left(j \omega\right) R C \underline{U}_o\left(j \omega\right) + \underline{U}_o\left(j \omega\right) &= \underline{U}_i\left(j \omega\right) \\
		\left(\left(j \omega\right)^2 L C + \left(j \omega\right) R C + 1\right) \underline{U}_o\left(j \omega\right) &= \underline{U}_i\left(j \omega\right) \\
		\left(- \omega^2 L C + j \omega R C + 1\right) \underline{U}_o\left(j \omega\right) &= \underline{U}_i\left(j \omega\right)
	\end{split}
\end{equation}

Now, we can formulate a simple relationship in the frequency domain between the input signal $\underline{U}_i\left(j \omega\right)$ and the output signal $\underline{U}_o\left(j \omega\right)$, which are both now in frequency domain.
\begin{equation}
	\underline{U}_o\left(j \omega\right) = \underline{H} \left(j \omega\right) \cdot \underline{U}_i\left(j \omega\right)
\end{equation}

$\underline{H} \left(j \omega\right)$ is the \index{transfer function} \textbf{transfer function} which fully describes a deterministic \ac{LTI} system. \nomenclature[Sh]{$\underline{H} \left(j \omega\right)$}{Transfer function of a system}

In our electric network, the transfer function is:
\begin{equation}
	\underline{H} \left(j \omega\right) = \frac{1}{- \omega^2 L C + j \omega R C + 1}
\end{equation}

In general:
\begin{definition}{Transfer function}
	The \index{transfer function} \textbf{transfer function} of a system with the input $\underline{X}\left(j \omega\right) \InversTransformHoriz \underline{x}(t)$ and the output $\underline{Y}\left(j \omega\right) \InversTransformHoriz \underline{y}(t)$ is:
	\begin{equation}
		\underline{H} \left(j \omega\right) = \frac{\underline{Y}\left(j \omega\right)}{\underline{X}\left(j \omega\right)}
		\label{eq:ch02:tranfer_func}
	\end{equation}
\end{definition}

\begin{excursus}{I'm lost! I have a non-linear system.}
	Your are not! Under certain conditions, a non-linear system can be linearized.
	
	Using the \index{Taylor series} \textbf{Taylor series}, a non-linear function can be split into a series of polynomials.
	\begin{equation}
		f(t) = \sum_{n=0}^{\infty} \left. \frac{1}{n!} \frac{\mathrm{d}^n f(t)}{\mathrm{d} t^n} \right|_{t = t_0} \left(t - t_0\right)^n
	\end{equation}
	The Taylor series is developed around a specific \index{operating point} \textbf{operating point} $t_0$.
	
	Using only the polynomials of orders $n = 0$ and $n = 1$, we obtain a linear equation. This procedure is called \index{Taylor approximation} \textbf{Taylor approximation}.
	\begin{equation}
		f(t) \approx f(t_0) + \underbrace{\left. \frac{\mathrm{d} f(t)}{\mathrm{d} t} \right|_{t = t_0}}_{= f'(t_0)} \left(t - t_0\right) \qquad \forall \; |t - t_0| \rightarrow 0
	\end{equation}
	The Taylor approximation using just the polynomials up to $n = 1$ is called \index{linearization} \textbf{linearization}. The approximation is only valid around the operating point $t_0$, i.e., $t$ is constrained $|t - t_0| < \xi$. The approximation gets more imprecise for greater $\xi$.
	
	Linearization is a common method in electronic circuit analysis to model semiconductors, which are always non-linear. Semiconductors are based on an $e$-function.
\end{excursus}


\subsection{Impulse Response}

Let's transfer \eqref{eq:ch02:tranfer_func} back to the time domain.
\begin{equation}
	\underline{y}(t) = \underline{h}(t) * \underline{x}(t)
\end{equation}
The convolution (see \eqref{eq:ch02:def_convolution}) can be resolved to:
\begin{equation}
	\underline{y}(t) = \int_{\tau = -\infty}^{\infty} \underline{h}(\tau) \underline{x}(t - \tau) \, \mathrm{d} \tau = \int_{\tau = -\infty}^{\infty} \underline{h}(t - \tau) \underline{x}(\tau) \, \mathrm{d} \tau
\end{equation}

Now, the input signal is set to the Dirac delta function $\delta(t)$ (see \eqref{eq:ch02:dirac_delta}).
\begin{equation}
	\begin{split}
		\underline{y}_\delta(t) &= \underline{h}(t) * \underline{x}(t) \\
		 &= \int_{\tau = -\infty}^{\infty} \underline{h}(\tau) \delta(t - \tau) \, \mathrm{d} \tau \\
		 &= \underline{h}(t)
	\end{split}
\end{equation}

\begin{itemize}
	\item The convolution can be seen as the Dirac pulse shifted across the time axis and then multiplied by $\underline{h}(t)$ and integrated.
	\item Using the Dirac measure \eqref{eq:ch02:dirac_measure}, the integral becomes zero for all $\tau \neq t$.
	\item The integral becomes $\underline{h}(t)$ for all $\tau = t$.
\end{itemize}

\begin{definition}{Impulse response}
	The inverse Fourier transform of the transfer function $\underline{H} \left(j \omega\right)$ is the \index{impulse response} \textbf{impulse response} $\underline{h}(t)$.
	\begin{equation}
		\underline{h}(t) = \mathcal{F}^{-1}\left\{\underline{H} \left(j \omega\right)\right\}
	\end{equation}%
	\nomenclature[Sh]{$\underline{h}(t)$}{Impulse response of a system}
\end{definition}

The name ``impulse response'' directly connected to the Dirac delta function. The Dirac delta function can be seen as an ideal impulse (indefinitely narrow width in time, indefinitely high in value). Giving this impulse as an input into a system yields the impulse response.

\begin{fact}
	The impulse response is the time-domain response of a system to an ideal impulse (Dirac delta function).
\end{fact}

So, theoretically, you can obtain the impulse response -- and thereby a complete definition of the system -- by feeding a Dirac delta function into its input. Of course, this is not possible because a Dirac delta function cannot be generated in nature. However, it can be approximated (e.g. ultra-narrow and high-voltage pulse), yielding the impulse response of the ``system under test'' with uncertainties.

\begin{proof}{}
	A proof in the frequency domain is simple.
	
	Assume that $\underline{x}(t) = \delta(t)$, then $\underline{X}\left(j \omega\right) = 1$ (see \eqref{eq:ch02:ft_dirac}). Using \eqref{eq:ch02:tranfer_func},
	\begin{equation}
		\underline{Y}_\delta\left(j \omega\right) = \underline{H}\left(j \omega\right) \cdot \underbrace{\underline{X}\left(j \omega\right)}_{= 1} = \underline{H}\left(j \omega\right)
	\end{equation}
	
	Transform back to the time domain:
	\begin{equation}
		\underline{y}_\delta(t) = \underline{h}(t)
	\end{equation}
\end{proof}

You have learnt that any deterministic \ac{LTI} system can be expressed by:
\begin{itemize}
	\item transfer function
	\item impulse response
\end{itemize}

\subsection{Causality}

As already described in the introduction to this subsection, a system is causal if it does not rely on future input values.

\begin{definition}{Causality of a system}
	The impulse response of a stable system is constrained by:
	\begin{equation}
		\underline{h}(t) = 0 \qquad \forall \; t < 0
	\end{equation}
\end{definition}

Let's take rectangle function \eqref{eq:ch02:rect_function} as an example for the transfer function of a system:
\begin{equation}
	\underline{H}\left(j \omega\right) = \mathrm{rect}(\omega) = \begin{cases}
		0 & \qquad \text{if } \; |\omega| > \frac{1}{2}, \\
		1 & \qquad \text{if } \; |\omega| < \frac{1}{2}
	\end{cases}
\end{equation}
The inverse Fourier transform is, due to the duality, a sinc-function in time-domain:
\begin{figure}[H]
	\centering
	\begin{tikzpicture}
	\begin{axis}[
		height={0.25\textheight},
		width=0.6\linewidth,
		scale only axis,
		xlabel={$t$},
		ylabel={$|\underline{h}(t)|$},
		%grid style={line width=.6pt, color=lightgray},
		%grid=both,
		grid=none,
		legend pos=north east,
		axis y line=middle,
		axis x line=middle,
		every axis x label/.style={
			at={(ticklabel* cs:1.05)},
			anchor=north,
		},
		every axis y label/.style={
			at={(ticklabel* cs:1.05)},
			anchor=east,
		},
		xmin=-52,
		xmax=52,
		ymin=0,
		ymax=1.2,
		xtick={-50, -40, ..., 50},
		ytick={0, 0.25, ..., 1.0}
	]
		\addplot[blue, thick, smooth, domain=-50:50, samples=200] plot (\x,{abs(sinc((1/(2*pi))*\x))});
		\addlegendentry{Non-causal system impulse response};
		\addplot[red, thick, smooth, domain=0:50, samples=200] plot (\x,{0.5*abs(sinc((1/(2*pi))*\x))});
		\addlegendentry{Causal system impulse response};
	\end{axis}
	\end{tikzpicture}
	\caption{Impulse response of a system with a rectangular function as its transfer function}
\end{figure}
The system's impulse response $\underline{h}(t)$ (blue curve) is also defined in $t < 0$. Therefore, it is non-causal.

If $\underline{h}(t)$ is constrained to be zero for all $t < 0$ (red curve). It would be causal. However, the transfer function $\underline{H}\left(j \omega\right)$ would be different.

\begin{fact}
	Non-causal systems need to reliably predict future values of the input signal. Therefore, it is not possible to implement them in real.
\end{fact}

\subsection{Zeroes and Poles}

\begin{excursus}{Relationship between Fourier transform and Laplace transform}
	The \index{Laplace transform} Laplace transform is another integral transform, which is closely related to the Fourier transform. The (two-sided) Laplace transform is defined by:
	\begin{equation}
		\underline{X}(\underline{s}) = \mathcal{L} \left\{\underline{x}(t)\right\} = \int\limits_{t = -\infty}^{\infty} \underline{x}(t) e^{- \underline{s} t} \, \mathrm{d} t
	\end{equation}
	$\underline{x}(t)$ is the original (time-domain) function. $X(\underline{s})$ is the Laplace transform in frequency domain. $\underline{s}$ is the complex frequency variable, corresponding to $j \omega$ in the Fourier transform. In fact, $\underline{s}$ can be decomposed to:
	\begin{equation}
		\underline{s} = \sigma + j \omega
	\end{equation}
	The frequency variable of the Laplace transform is two-dimensional, whereas the frequency variable of the Fourier transform is one-dimensional.
	
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\draw[->] (-2.2,0) -- (2.2,0) node[below, align=left]{$\Re\left\{\underline{s}\right\}$};
			\draw[->] (0,-2.2) -- (0,2.2) node[left, align=right]{$\Im\left\{\underline{s}\right\}$};
			\draw[thick, red] (0,-2) -- (0,2);
			\draw[dashed, red] (0,1) -- (1,1.2) node[right, align=left, color=red]{$j \omega$};
		\end{tikzpicture}
		\caption{Complex plane of the complex frequency variable $\underline{s}$}
	\end{figure}
	
	The Fourier transform is a special case of the Laplace transform, setting $\sigma = 0$. The complex frequency variable becomes $\underline{s} = j \omega$. In the complex plane, the frequency variable $j \omega$ is only the imaginary axis.
	
	\vspace{0.5em}
	
	\textbf{Why two transforms?} Actually, the Laplace transform fully describes the system, including transients. Fourier transform neglects the transients due to $\sigma = 0$ and expects a \textbf{steady-state}.
	\begin{itemize}
		\item The Laplace transform is used for a full analysis of the system, especially transient analysis. Therefore, it is used in control engineering to describe components of a control system and analyse its stability (zeros and poles).
		\item The Fourier transform is suitable for steady-state analysis of a system. That means, that any on/off switching process has happened far in the past $t \rightarrow -\infty$.
	\end{itemize}
	
	However, in the literature Fourier transform is inconsistently used to analyse the poles and zeros of a system. In fact, a Laplace transform is behind this. But, that is just a notation issue, because $\omega$ is used instead of $\underline{s}$.
	
	The Fourier transform is more common in the field of signal processing and information theory, because signals are mostly steady-state and transients are of minor interest. That's why we stick to it.
\end{excursus}

In system analysis, zeros and poles play an important role.
\begin{itemize}
	\item $\underline{s}_0$ is a zero of the system with the transfer function $\underline{H}(\underline{s})$, when $\underline{H}(\underline{s}_0) = 0$. \nomenclature[Ss]{$\underline{s}_0$}{Zero of a system}
	\item $\underline{s}_\infty$ is a pole of the system with the transfer function $\underline{H}(\underline{s})$, when $\underline{H}(\underline{s}_\infty) \rightarrow \pm \infty$. \nomenclature[Ss]{$\underline{s}_\infty$}{Pole of a system}
\end{itemize}

$\underline{H}(\underline{s})$ can be written as a fraction with polynomials in both the numerator and denominator.
\begin{equation}
	\underline{H}(\underline{s}) = \frac{(\underline{s} - \underline{s}_{0,0}) (\underline{s} - \underline{s}_{0,1}) \ldots  (\underline{s} - \underline{s}_{0,p})}{(\underline{s} - \underline{s}_{\infty,0}) (\underline{s} - \underline{s}_{\infty,1}) \ldots (\underline{s} - \underline{s}_{\infty,q})}
\end{equation}
\begin{itemize}
	\item Zeros $\underline{s}_0$ are all values for $\underline{s}$ that make the numerator zero.
	\item Poles $\underline{s}_\infty$ are all values for $\underline{s}$ that make the denominator zero.
	\item There can be multiple zeros and poles with the same value. Counting their number yields their order.
\end{itemize}

Let's investigate the following example:
\begin{equation}
	\underline{H}(\underline{s}) = \frac{\underline{s}^2 - 2 j \underline{s} - 1}{\underline{s}^2 - 4} = \frac{(\underline{s} - j)^2}{(\underline{s} + 2) (\underline{s} - 2)}
\end{equation}
The system has
\begin{itemize}
	\item a zero of 2nd order at $\underline{s}_{0,0} = j$,
	\item a pole of 1st order at $\underline{s}_{\infty,0} = 2$, and
	\item a pole of 1st order at $\underline{s}_{\infty,1} = -2$.
\end{itemize}
\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$\Re\left\{\underline{s}_\infty\right\} = \sigma$},
			ylabel={$\Im\left\{\underline{s}_\infty\right\} = \omega$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-3,
			xmax=3,
			ymin=-3,
			ymax=3,
			xtick={-2, -1, ..., 2},
			ytick={-2, -1, ..., 2},
		]
			\addplot[red, only marks, mark=o] coordinates {(0, 1)};
			\addlegendentry{Zeros};
			\addplot[red, only marks, mark=x] coordinates {(2, 0) (-2, 0)};
			\addlegendentry{Poles};
		\end{axis}
	\end{tikzpicture}
	\caption{Zeros and poles of the example system}
\end{figure}

The zeros and poles are used to analyse the stability of a system.
\begin{itemize}
	\item The input signal $|\underline{x}(t)| < \infty \quad \forall \; t \in \mathbb{R}$ is bounded, i.e. not infinite.
	\item A stable system always emits a output signal $|\underline{x}(t)| < \infty \quad \forall \; t \in \mathbb{R}$ which is bounded, too.
	\item This is called \index{BIBO stability} \textbf{\ac{BIBO} stability}.
	\item To archive \ac{BIBO} stability, all poles must be on the left side of the complex plane including the imaginary axis: $\Re\left\{\underline{s}_\infty\right\} \stackrel{!}{\leq} 0$.
\end{itemize}

\subsection{Amplitude and Phase Response}

The complex transfer function of a system can be decomposed to polar coordinates:
\begin{equation}
	\underline{H}\left(j \omega\right) = A(\omega) \cdot e^{j \varphi(\omega)}
\end{equation}
Both $A(\omega)$ and $\varphi(\omega)$ are functions of the angular frequency $\omega$. \nomenclature[Sa]{$A(\omega)$, $\left|\underline{H}(j \omega)\right|$}{Amplitude response of a system} \nomenclature[Sp]{$\varphi(\omega)$, $\arg\left(\underline{H}(j \omega)\right)$}{Phase response of a system}

Each input signal $\underline{x}(t) \TransformHoriz \underline{X}\left(j \omega\right)$ is subject to
\begin{itemize}
	\item a change in amplitude, called \emph{gain} or \index{amplitude response} \textbf{amplitude response} $A(\omega)$: $|\underline{Y}\left(j \omega\right)| = A(\omega) \cdot |\underline{X}\left(j \omega\right)|$
	\item a shift in phase, called \emph{phase shift} or \index{phase response} \textbf{phase response} $\varphi(\omega)$: $\arg\left(\underline{Y}\left(j \omega\right)\right) = \varphi(\omega) + \arg\left(\underline{X}\left(j \omega\right)\right)$
\end{itemize}

For each mono-chromatic component of the signal at an angular frequency of $\omega$, the gain and phase shift can be illustrated:
\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$t$},
			ylabel={$x(t), y(t)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-3,
			xmax=3,
			ymin=-3,
			ymax=3,
			xtick={-2, -1, ..., 2},
			ytick={-2, -1, ..., 2},
		]
			\addplot[blue, domain=-2:2, samples=100] plot (\x, {2*sin(360*\x)});
			\addlegendentry{$x(t)$};
			\addplot[red, domain=-2:2, samples=100] plot (\x, {sin((360*\x - 45)});
			\addlegendentry{$y(t)$};
		\end{axis}
	\end{tikzpicture}
	\caption[Gain and phase shift of a mono-chromatic signal]{Gain and phase shift of a mono-chromatic signal. Here, the gain $A = 0.5$ and the phase shift is $\varphi = \frac{\pi}{4} = \SI{45}{\degree}$.}
	\label{fig:ch02:gain_phase_shift}
\end{figure}

\textit{Remarks:}
\begin{itemize}
	\item The system does never change the frequency of a mono-chromatic signal, because the system is linear.
	\item The envelope (shape of the signal) of a multi-frequent signals may however be altered. Each mono-chromatic component is subject to its own change by $\underline{H}\left(j \omega\right)$.
\end{itemize}

The values of both the amplitude response $A(\omega)$ and the phase response $\varphi(\omega)$ can be plotted over the angular frequency $\omega$.

Let's take an example:
\begin{equation}
	\underline{H}\left(j \omega\right) = \frac{3}{j \omega \tau + 1}
\end{equation}
with $\tau = \SI{0.05}{s}$.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.8\linewidth,
			scale only axis,
			xlabel={$\omega \text{ in } \si{1/s}$},
			ylabel={$A(\omega) = \left|\underline{H}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-55,
			xmax=55,
			ymin=0,
			ymax=3.2,
			xtick={-50, -40, ..., 50},
			ytick={0, 1, ..., 3},
		]
			\addplot[blue, thick, domain=-50:50, samples=100] plot (\x, {3 * sqrt( 1 / ((0.05 * \x)^2 + 1) )});
		\end{axis}
	\end{tikzpicture}
	\caption{Amplitude response}
\end{figure}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.8\linewidth,
			scale only axis,
			xlabel={$\omega \text{ in } \si{1/s}$},
			ylabel={$\varphi(\omega) = \arg\left(\underline{H}(j \omega)\right)$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-55,
			xmax=55,
			ymin=-4,
			ymax=4,
			xtick={-50, -40, ..., 50},
			ytick={-3.14159, -1.5708, 1.5708, 3.14159},
			yticklabels={$-\pi\hspace{0.30cm}$, $-\frac{\pi}{2}$,
				$\frac{\pi}{2}$, $\pi\hspace{0.10cm}$},
		]
			\addplot[blue, thick, domain=-50:50, samples=100] plot (\x, {(2*pi/360) * atan2((3*(0.05*\x)/((0.05*\x)^2+1)), (3/((0.05*\x)^2+1)))});
		\end{axis}
	\end{tikzpicture}
	\caption{Phase response}
\end{figure}


\subsection{Ideal Filters}

All ideal filters are non-causal and can therefore not be implemented in real.

\subsubsection{Ideal Low Pass Filter}

\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\draw (0,0) to[lowpass] (2,0);
	\end{circuitikz}
	\caption[Block symbol of a \acs{LPF}]{Block symbol of a \ac{LPF}}
\end{figure}%
\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[lowpass] (2,0);\end{circuitikz}}{Low pass filter}

A \index{low pass filter} \textbf{\acf{LPF}}
\begin{itemize}
	\item lets pass all signals below a \index{low pass filter!cut-off frequency} \textbf{cut-off frequency} $\omega_o$ (all signals within the \index{low pass filter!pass band} \textbf{pass band} $|\omega| < \omega_o$),
	\item blocks all signals above the cut-off frequency $\omega_o$ (all signals within the \index{low pass filter!stopband} \textbf{stopband} $|\omega| > \omega_o$).
\end{itemize}

\begin{equation}
	\underline{H}_{LPF}\left(j \omega\right) = \mathrm{rect}\left(\frac{1}{2} \cdot \frac{\omega}{\omega_o}\right) = \begin{cases}
		0 & \qquad \text{if } \; |\omega| > \omega_o, \\
		1 & \qquad \text{if } \; |\omega| < \omega_o
	\end{cases}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{LPF}(\omega) = \left|\underline{H}_{LPF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=0,
			ymax=1.5,
			xtick={-20, 0, 20},
			xticklabels={$-\omega_o$, 0, $\omega_o$},
			ytick={0, 0.5, 1},
		]
			\addplot[red, thick] coordinates {(-50, 0) (-20, 0)};
			\addplot[red, dashed] coordinates {(-20, 0)(-20, 1)};
			\addplot[red, thick] coordinates {(-20, 1) (20, 1)};
			\addplot[red, dashed] coordinates {(20, 1) (20, 0)};
			\addplot[red, thick] coordinates {(20, 0) (50, 0)};
		\end{axis}
	\end{tikzpicture}
	\caption[Amplitude response of an ideal \acl{LPF}]{Amplitude response of an ideal \ac{LPF}}
\end{figure}

\subsubsection{Ideal High Pass Filter}

\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\draw (0,0) to[highpass] (2,0);
	\end{circuitikz}
	\caption[Block symbol of a \acs{HPF}]{Block symbol of a \ac{HPF}}
\end{figure}%
\nomenclature[Bh]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[highpass] (2,0);\end{circuitikz}}{High pass filter}

A \index{high pass filter} \textbf{\acf{HPF}}
\begin{itemize}
	\item blocks all signals below a \index{high pass filter!cut-off frequency} \textbf{cut-off frequency} $\omega_o$ (all signals within the \index{high pass filter!stopband} \textbf{stopband} $|\omega| < \omega_o$),
	\item lets pass all signals above the cut-off frequency $\omega_o$ (all signals within the \index{high pass filter!pass band} \textbf{pass band} $|\omega| > \omega_o$).
\end{itemize}

\begin{equation}
	\underline{H}_{HPF}\left(j \omega\right) = 1 - \underline{H}_{LPF}\left(j \omega\right) = \begin{cases}
		1 & \qquad \text{if } \; |\omega| > \omega_o, \\
		0 & \qquad \text{if } \; |\omega| < \omega_o
	\end{cases}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.6\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{HPF}(\omega) = \left|\underline{H}_{HPF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=0,
			ymax=1.5,
			xtick={-20, 0, 20},
			xticklabels={$-\omega_o$, 0, $\omega_o$},
			ytick={0, 0.5, 1},
		]
			\addplot[red, thick] coordinates {(-50, 1) (-20, 1)};
			\addplot[red, dashed] coordinates {(-20, 1)(-20, 0)};
			\addplot[red, thick] coordinates {(-20, 0) (20, 0)};
			\addplot[red, dashed] coordinates {(20, 0) (20, 1)};
			\addplot[red, thick] coordinates {(20, 1) (50, 1)};
		\end{axis}
	\end{tikzpicture}
	\caption[Amplitude response of an ideal \acl{HPF}]{Amplitude response of an ideal \ac{HPF}}
\end{figure}

\subsubsection{Ideal Band Pass Filter}

\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\draw (0,0) to[bandpass] (2,0);
	\end{circuitikz}
	\caption[Block symbol of a \acs{BPF}]{Block symbol of a \ac{BPF}}
\end{figure}%
\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[bandpass] (2,0);\end{circuitikz}}{Band pass filter}

A \index{band pass filter} \textbf{\acf{BPF}}
\begin{itemize}
	\item lets pass all signals within a \index{band pass filter!pass band} \textbf{pass band} with the \index{band pass filter!bandwidth} \textbf{bandwidth} $\omega_b$ which is centred around the \index{band pass filter!centre frequency} \textbf{centre frequency} $\omega_c$: pass band $||\omega| - \omega_c| < \frac{\omega_b}{2}$
	\item blocks all signals outside the pass band: \index{band pass filter!stopband} \textbf{stopband} is everything outside the pass band
\end{itemize}

\begin{equation}
	\begin{split}
		\underline{H}_{BPF}\left(j \omega\right) &= \underbrace{\mathcal{F}\left\{\frac{1}{\pi} \cos\left(\omega_c t\right)\right\} * \left.\underline{H}_{LPF}\left(j \omega\right)\right|_{\omega_o = \frac{1}{2} \omega_b}}_{\text{``Two-sided frequency shift''}} \\
		 &= \left( \delta\left(\omega - \omega_c\right) + \delta\left(\omega + \omega_c\right) \right) * \mathrm{rect}\left(\frac{\omega}{\omega_b}\right) \\
		 &= \mathrm{rect}\left(\frac{\omega - \omega_0}{\omega_b}\right) + \mathrm{rect}\left(\frac{\omega + \omega_0}{\omega_b}\right) \\
		 &= \begin{cases}
			1 & \qquad \text{if } \; ||\omega| - \omega_c| < \frac{\omega_b}{2}, \\
			0 & \qquad \text{else}
		\end{cases}
	\end{split}
\end{equation}

The \ac{BPF} can be seen as a \ac{LPF} frequency-shifted in both positive and negative direction by the centre frequency $\omega_c$. This special ``two-sided frequency shift'' will later be called \emph{modulation}.

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.8\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{BPF}(\omega) = \left|\underline{H}_{BPF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=0,
			ymax=1.5,
			xtick={-45, -32.5, -20, 0, 20, 32.5, 45},
			xticklabels={$-\omega_c - \frac{\omega_b}{2}$, $-\omega_c$, $-\omega_c + \frac{\omega_b}{2}$, 0, $\omega_c - \frac{\omega_b}{2}$, $\omega_c$, $\omega_c + \frac{\omega_b}{2}$},
			ytick={0, 0.5, 1},
		]
			\addplot[red, thick] coordinates {(-50, 0) (-45, 0)};
			\addplot[red, dashed] coordinates {(-45, 0)(-45, 1)};
			\addplot[red, thick] coordinates {(-45, 1) (-20, 1)};
			\addplot[red, dashed] coordinates {(-20, 1) (-20, 0)};
			\addplot[red, thick] coordinates {(-20, 0) (20, 0)};
			\addplot[red, dashed] coordinates {(20, 0) (20, 1)};
			\addplot[red, thick] coordinates {(20, 1) (45, 1)};
			\addplot[red, dashed] coordinates {(45, 1) (45, 0)};
			\addplot[red, thick] coordinates {(45, 0) (50, 0)};
		\end{axis}
	\end{tikzpicture}
	\caption[Amplitude response of an ideal \acl{BPF}]{Amplitude response of an ideal \ac{BPF}}
\end{figure}

\subsubsection{Ideal Band Stop Filter}

\begin{figure}[H]
	\centering
	\begin{circuitikz}
		\draw (0,0) to[bandstop] (2,0);
	\end{circuitikz}
	\caption[Block symbol of a \acs{BSF}]{Block symbol of a \ac{BSF}}
\end{figure}%
\nomenclature[Bl]{\begin{circuitikz}[baseline={(current bounding box.center)}]\draw (0,0) to[bandstop] (2,0);\end{circuitikz}}{Band stop filter}

A \index{band stop filter} \textbf{\acf{BSF}}
\begin{itemize}
	\item blocks all signals within a \index{band stop filter!stopband} \textbf{stopband} with the \index{band stop filter!bandwidth} \textbf{bandwidth} $\omega_b$ which is centred around the \index{band stop filter!centre frequency} \textbf{centre frequency} $\omega_c$: stopband $||\omega| - \omega_c| < \frac{\omega_b}{2}$
	\item lets pass all signals outside the pass band: \index{band stop filter!pass band} \textbf{pass band} is everything outside the stopband
\end{itemize}

\begin{equation}
	\underline{H}_{BSF}\left(j \omega\right) = 1 - \underline{H}_{BPF}\left(j \omega\right) = \begin{cases}
		0 & \qquad \text{if } \; ||\omega| - \omega_c| < \frac{\omega_b}{2}, \\
		1 & \qquad \text{else}
	\end{cases}
\end{equation}

\begin{figure}[H]
	\centering
	\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.8\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{BSF}(\omega) = \left|\underline{H}_{BSF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-52,
			xmax=52,
			ymin=0,
			ymax=1.5,
			xtick={-45, -32.5, -20, 0, 20, 32.5, 45},
			xticklabels={$-\omega_c - \frac{\omega_b}{2}$, $-\omega_c$, $-\omega_c + \frac{\omega_b}{2}$, 0, $\omega_c - \frac{\omega_b}{2}$, $\omega_c$, $\omega_c + \frac{\omega_b}{2}$},
			ytick={0, 0.5, 1},
		]
			\addplot[red, thick] coordinates {(-50, 1) (-45, 1)};
			\addplot[red, dashed] coordinates {(-45, 1)(-45, 0)};
			\addplot[red, thick] coordinates {(-45, 0) (-20, 0)};
			\addplot[red, dashed] coordinates {(-20, 0) (-20, 1)};
			\addplot[red, thick] coordinates {(-20, 1) (20, 1)};
			\addplot[red, dashed] coordinates {(20, 1) (20, 0)};
			\addplot[red, thick] coordinates {(20, 0) (45, 0)};
			\addplot[red, dashed] coordinates {(45, 0) (45, 1)};
			\addplot[red, thick] coordinates {(45, 1) (50, 1)};
		\end{axis}
	\end{tikzpicture}
	\caption[Amplitude response of an ideal \acl{BSF}]{Amplitude response of an ideal \ac{BSF}}
\end{figure}

\subsection{Realizable Filters}

Realizable filters
\begin{itemize}
	\item are causal,
	\item have a real-valued slope between pass band and stopband instead of an ideal cut-off (step).
	\item Their phase response $\varphi(\omega)$ is not constantly zero.
\end{itemize}

The cut-off frequencies or bandwidth, respectively, is defined at those frequencies, where the output signal power has dropped to $0.5$ in relation to the peak value. For voltages, this means $\sqrt{2} = 0.707$ of the peak voltage\footnote{$\sqrt{2} = 0.707$ is the crest factor for sinusoidal voltage signals.}. In decibel, this is \SI{-3}{dB}.

\begin{itemize}
	\item The order of the filter is the number of their memory components (capacitors, inductances, memory cells). The order corresponds to the highest exponent of $j \omega$ (or $\underline{s}$) in the transfer function of the filter.
	\item A higher filter order yields a filter whose shape comes closer to the ideal filter (steeper slopes).
	\item The filters depicted below are of low order and therefore very ``poor'' in performance.
\end{itemize}

\subsubsection{Low Pass Filter}

\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[R, l=$R$, o-] ++(2,0) to[short, *-o] ++(2,0);
			\draw (2, 0) to[C, l=$C$, -*] ++(0,-2);
			\draw (0, -2) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
		\end{circuitikz}
		\caption{Real low pass filter as an electrical network}
	\end{figure}

	Transfer function of this example:
	\begin{equation}
		\underline{H}\left(j \omega\right) = \frac{1}{j \omega RC + 1}
	\end{equation}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
		\begin{axis}[
			height={0.25\textheight},
			width=0.9\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{LPF}(\omega) = \left|\underline{H}_{LPF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-32,
			xmax=32,
			ymin=0,
			ymax=1.2,
			xtick={-5, 0, 5},
			xticklabels={$-\omega_o$, 0, $\omega_o$},
			ytick={0, 0.5, 0.707, 1},
		]
			% RC = 0.2
			\addplot[blue, thick, domain=-30:30, samples=100] plot (\x, {sqrt( 1 / ((0.2 * \x)^2 + 1) )});
			
			\addplot[red, dashed] coordinates {(-5, 0) (-5, 0.707) (5, 0.707) (5, 0)};
		\end{axis}
		\end{tikzpicture}
		\caption[Amplitude response of a real \acl{LPF}]{Amplitude response of a real \ac{LPF}}
	\end{figure}
\end{minipage}

\subsubsection{High Pass Filter}

\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[C, l=$C$, o-] ++(2,0) to[short, *-o] ++(2,0);
			\draw (2, 0) to[R, l=$R$, -*] ++(0,-2);
			\draw (0, -2) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
		\end{circuitikz}
		\caption{Real high pass filter as an electrical network}
	\end{figure}

	Transfer function of this example:
	\begin{equation}
		\underline{H}\left(j \omega\right) = \frac{j \omega RC}{j \omega RC + 1}
	\end{equation}
	
	\textit{Remark:} The filter has one zero $\underline{s}_0 = 0 + j0$. The zero can be directly seen in the amplitude response: $A_{HPF}(\omega = 0) = 0$. The pole $\underline{s}_\infty = \frac{1}{RC} + j 0$ is not directly visible, because only the $j \omega$-axis of $\underline{s}$ is plotted. However, it indirectly determines the shape of the curve.
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\begin{axis}[
			height={0.25\textheight},
			width=0.9\linewidth,
			scale only axis,
			xlabel={$\omega$},
			ylabel={$A_{HPF}(\omega) = \left|\underline{H}_{HPF}(j \omega)\right|$},
			%grid style={line width=.6pt, color=lightgray},
			%grid=both,
			grid=none,
			legend pos=north east,
			axis y line=middle,
			axis x line=middle,
			every axis x label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=north,
			},
			every axis y label/.style={
				at={(ticklabel* cs:1.05)},
				anchor=east,
			},
			xmin=-32,
			xmax=32,
			ymin=0,
			ymax=1.2,
			xtick={-5, 0, 5},
			xticklabels={$-\omega_o$, 0, $\omega_o$},
			ytick={0, 0.5, 0.707, 1},
			]
			% RC = 0.2
			\addplot[blue, thick, domain=-30:30, samples=100] plot (\x, {sqrt( (0.2 * \x)^2 / ((0.2 * \x)^2 + 1) )});
			
			\addplot[red, dashed] coordinates {(-5, 0) (-5, 0.707) (5, 0.707) (5, 0)};
		\end{axis}
		\end{tikzpicture}
			\caption[Amplitude response of a real \acl{HPF}]{Amplitude response of a real \ac{HPF}}
	\end{figure}
\end{minipage}

\subsubsection{Band Pass Filter}

\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[C, l=$C$, o-] ++(2,0) to[L, l=$L$, -o] ++(2,0);
			\draw (0, -2) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -2);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -2);
		\end{circuitikz}
		\caption{Real band pass filter as an electrical network}
	\end{figure}
	\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
				\begin{axis}[
				height={0.25\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$A_{BPF}(\omega) = \left|\underline{H}_{BPF}(j \omega)\right|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=west,
				},
				xmin=0,
				xmax=52,
				ymin=0,
				ymax=1.2,
				xtick={0, 20},
				xticklabels={0, $\omega_c$},
				ytick={0, 0.5, 0.707, 1},
			]
				\addplot[blue, thick, domain=0:50, samples=100] plot (\x, {sqrt( 1 / ((0.2 * (\x - 20))^2 + 1) ) });
				
				\addplot[red, dashed] coordinates {(15, 0) (15, 0.707) (25, 0.707) (25, 0)};
			\end{axis}
		\end{tikzpicture}
		\caption[Amplitude response of a real \acl{BPF}]{Amplitude response of a real \ac{BPF}. Negative $\omega$-axis omitted.}
	\end{figure}
\end{minipage}

\subsubsection{Band Stop Filter}

\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{circuitikz}
			\draw (0, 0) to[short, o-o] ++(4,0);
			\draw (2, 0) to[C, l=$C$, *-] ++(0,-2) to[L, l=$L$, -*] ++(0,-2);
			\draw (0, -4) to[short, o-o] ++(4,0);
			
			\draw (0, 0) to[open, v=$u_i(t)$] (0, -4);
			\draw (4, 0) to[open, v^=$u_o(t)$] (4, -4);
		\end{circuitikz}
		\caption{Real band stop filter as an electrical network}
	\end{figure}
\end{minipage}
\hfill
\begin{minipage}{0.45\linewidth}
	\begin{figure}[H]
		\centering
		\begin{tikzpicture}
			\begin{axis}[
				height={0.25\textheight},
				width=0.9\linewidth,
				scale only axis,
				xlabel={$\omega$},
				ylabel={$A_{BSF}(\omega) = \left|\underline{H}_{BSF}(j \omega)\right|$},
				%grid style={line width=.6pt, color=lightgray},
				%grid=both,
				grid=none,
				legend pos=north east,
				axis y line=middle,
				axis x line=middle,
				every axis x label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=north,
				},
				every axis y label/.style={
					at={(ticklabel* cs:1.05)},
					anchor=west,
				},
				xmin=0,
				xmax=52,
				ymin=0,
				ymax=1.2,
				xtick={0, 20},
				xticklabels={0, $\omega_c$},
				ytick={0, 0.5, 0.707, 1},
			]
				\addplot[blue, thick, domain=0:50, samples=100] plot (\x, {sqrt( (0.2 * (\x - 20))^2 / ((0.2 * (\x - 20))^2 + 1) )});
				
				\addplot[red, dashed] coordinates {(15, 0) (15, 0.707) (25, 0.707) (25, 0)};
			\end{axis}
		\end{tikzpicture}
		\caption[Amplitude response of a real \acl{BSF}]{Amplitude response of a real \ac{BSF}. Negative $\omega$-axis omitted.}
	\end{figure}
\end{minipage}

\printbibliography[heading=subbibliography]
\end{refsection}